THE ML/TI MACRO PROCESSOR

ML/T user’s manual

P.J. Brown

University of Xent at Cantexburv

Fourth edition, August 1970

Reprinted January 1972, July 1974, March 1977.

(::) P.J. Brown

Praface

This manual describes IHL/I in full detail with examples of
its applications. It is not assumed that the reader has any
previous knowledge of macro processors.

A shorter, simpler, document describing ML/l is also avail-
ablz. This is called "The ML/I macro processor: a cimple
introductory guide". A paper descrihing how i'L/I is implemented
appeared in Comrmunications of the ACiI 13, 12 (Dec. 1972), ppn. 10589 ~
106G2; the book llacro processors and portable software (J. "iley,
1974) contains further details.

Preface to the TFourth rlition

The Fourth Editicn of the 'L/ User's 'fanual contains few
significant changes ovar the Third ~dition. The onliv additions
are lavout kevwords (including the 3PACES keyword) and system
varial:les. 2s well as these additions certain corrections and
chanaes of format have been nade. In particular it is assumeqd
in this Edition that newline, not semicolon, is the closing deli-
miter for operation macros, since nractice has shown that this is
the best choice. '

'L/I has remained in a stahkle state for some time, and there
are no current plans to make extensive changes. ITn fact th=s current
L/I is really !L/IY since it is the end product of a series of im-
provements to the original 1266 version; it has not, however, heen
renared,

ML/I- USER'S . MANUAL

Table of contents

Chapter 1 Introduction

1.1 Ceneral description

1.2 Organisation of the manual

1.3 Notation for describing syntax
1.4 Further points of notation

1.5 Improving ML/I

The Environment and its constituents

N

Chapter

Basic action of ML/I

Character set

Text

Macros and delimiter gtructures

2.4.1 Exomples of macros

2.4.2 Delimiter structures

2.4.3 Optional and repeated delimiters

2.4.4 Macro definitions

2.4.5 The difference between macros and subroutines
2.4.6 Impossible replacements

[\ IR T SR V)
1 .
™ N

2.5 Introduction tc macro-time variables and statements
2.6 Inserts
2.6.1 HMacro variables
2.6.2 Initialization of macro variables
2.6.3 Subscripts and macro expressions
2.6.4 Integer overflow
2.6.5 Macro labels
Z2.6.6 lMacro elements
2.6.7 Insert definitions
2.6.% Examples of inserts
Z.7 Skips
2.7.1 Matched skips and straicght skips
2.7.2 Literal brackets
2.7.2 Lxample of a matched skip

Coutinued:

2.8 Warning markers

2.9 Summary of the environment

2.10* Normal-scan macros and straight—-scan macros

2.11 Name environment used for examples
Chapter 3 Text Scanning and evaluation

3.1 Nesting and recursion

3.2 Call by nawre

3.3 Details of the scanning process

3.4 The methcd of searching for delimiters

3.5% Exclusive delimiters

3.6% Dynamically generated constructions

Chapter 4

Opersz ation macros and their use in setting up the

environment

4.1 Operation macros

4.2 Use of literal brackets for surrounding operation
macro arguments

4.3 NEC macros

G, 4% Dynamic aspects of the environment

4.5% Protceccted and unprotected inserts

L.6% Ambiguous use of names

447% Implications of rules for name clashes

Chapter 5 Specifications of individual operation macros

5.1 Specification ¢f delimiter structures
5.1.1 Reywoxrds
5.1.2 “he consequences ol evaluation
5.1.3*% Introduction to more complicataed cases
5.1.4*% Full syntax of structure representations
5.1.5% ixamples of complex structure representations

;- 5.1.6 Possible errors in structure representations
5.2 The WEC macros
& : 5.2.1 MCWARN

5.2.2 MCIWS
5.2.3 MCSKIP
5.2.41 MCDEF
5.2.5 FCHOWARN, MCNOINS, MCWOSKIP and MCNODEF
5.2.6 MCWARNG, MCINSG, MCSKIPG and MCDEFG
5.2.7 MCALTER

Continued:

5.3+ - System fuactions
5.3.1 MCLEHG
5.3.2 MCSUB

5.4 rurther operaticii macros
5.4.1 MCSET
4.2 MCNOTE
b.é 3 HCGO

5.4.3.1% Zxact description of a GO TO
5.4.4 MCPVAR

Chapter € EXyer messages

Gl Examples of an eryor messages

5.2 Notes on context print-ouis

5.3 Complete list of messages

6.3.2 ~ 6.32.13 Description of individual messages

Chapter 7 Hints on using ML/I

7.1 How to set up the anvironment

7.2 Possible sources of error

7.2.1 Jumping over expanded code
2.2 Generation of unig:ue labels
7.2.3 Lower case letters
7.2.4 Use of newlines in definitions
2.2 Use of redundant spaces
7.3 aim@l techniques
1 Interchanging two names
7.3.2 lRemoving optional debuguing statements
3 Inserting extrz debuyging statements
7.3.4 Deleting a macro
7.3.5 iffereantiation between special-purpose
registers and stcrage locations
Testing for macro cails
Searching
uracketlng within macro ex9r6551ons
eletion from source text only
sticated techniques
Macro~time loop
Examining optiocnal delimiters
Dynamically constructed calls
Arithmetic expression macro
Forral parameter hames
Intercepting changes of state
Remambeaering code for subsequent insertion
Constructions with restricted scopes
Cptimizing macro-generated code
Macro tn create 2 macro

*
3

NN N NI

.

e
»bLu!\.’l‘“l""\OCfl\J-m

~3
°

~}
.
» °

o]
u\.; u..a- x.,«-tbﬁ} [oRN K':‘-.’U W w W w

°

» .

\i\)\}\l-d\l\!
!-—’&quow(;:
O

L‘:!CL

LN)

171

Chapter 1 Introductiou

1.1 General description

ML/I is a general macro processor. It is general in the
sense that it can be used to process any kind of text. The text
may be in any programming language or natural language, or it
may be numerical data. The most important use of ML/I is to
provide the user with a simple means of adding extra statements
(or other syntactic forms) to an existing programming language
in order to make the language more suitable for his own field
of application. This process of extension may be carried to
the level where the extended language could be regarded as a
new language in its own right. Other uses of ML/I are program
paramaterization (e.g. a parameter might determine whether de-
bugging statements are to be included in a program) and various
applications in text editing or correction and data format
conversion. HML/I is also suitable for use as the final pass
of a compiler.

This manual does not assume the reader has any previous
expericnce of macro processors. However, the reader who is
familiar with macro processors might be interested in knowing
the main features of ML/I before plunging into details. These
features are:

(a) Macros with a variaple number of arguments.

(b) Delimiters of the arguments of each macro are choscn
by the user, and a macro may have several possible
patterns of delimiters, each with a different meaning.

(c) Macro-time integer variables. ra

(d) Hacro-time assignment and GO TO statements.

(e) No restrictions on nesting and recursion.

(f) Macro calls occurring anywhere in the text (i.e.
calls do not have to appear in a particular field,
nor do they have to be preceded by a "warning
marker") .

(g) Comprehensive error messages,

i.2 Organisation of the manual

Chapters 2, 3, 4 and"5S of this manual describe ML/I in
full detail. <Chapter 6 doscribes error messages and Cnapter
7 contains hints and examples. The reader may £ind it useful
to look ahead to the examples in Chapter 7 if he has diificulty
with the main text. Some Sectiong of this manual can be omittod

1/2

on a _first reading and these are marked with an asterisk.

T“his manual Jdoes not describe features of ML/I that are
implementation~dependent, e.g. operating instructions, character
set, etc., Instead there is an Appendixz which describes the
implementation~dependent features for zach implementation.

Thus Appendix A describes the PDP-7 implementation, Appendix .
B the Titan one, etc. These Appendices are available separately.

A few features of ML/I as described in this manual may
not be present in some implementations. In addition some
implementations may include extra features. See Section 1 of
the relevant Appendix for details.

1.3 Notation for describing syntax

The notation used to describe syntax should be self-explanatory.
An oxample of its use is the following description of a hypothetical
IF statement:

IF condition THEN statement:

As can be seen, a syntactic form is defined by concatenating
its constituents, A constituent that is itself the namne of a
syntactic form is underlined. +The remaining constituents are
literals.

_ A notation borrowed from Brooker and Morris is used to
indicate parts of syntactic forms that may optionally be repeated
and/or omitted. In this notation a constituent or series of
constituents that may optionally be omitted is written:

[constituents ?]

Constituents that may be repeated any desired number of
times are written:

I coustituents *]

and constituents that may be amitted or repeated are writtens

I constituents *?]

1/3
Thus if the above IF statement had an optlional ELSE clausce, it
would .be written
IF condition THEJ statement [ELSE statement ?]

and a hypothetical SUM statement which permitted any number of
arguments, provided there were at least two, might be defined:

SUM argument [,arqument *] ;

Lastly, when there are several alternative forms for a
constituent, these are written:

(form 1)
(form 2)
« .)
(:)
(form N)

Thus an expression might be defined as:

variable [Et;variable*?]

(x)
(/)

Note that the asterisk means that the syntactic forms enclosed
within the brackets may be repeatedy it is not required that
identical text be written at eacihh repetition.

1.4 Further points of notation

(a) When it is desired to emphasize the presence of a
space, tab or newline in a piece of text, this is done
by writing SPACE, TAB or WL, respectively. WNote that this
is simply a point of notation and the reader should be
careful not to interpret an occurrence of, say, NL in
a specification as requiring that he write 'W' and 'L’
and underline them.

(b) An integer is said to be positive only if it is greater

than zero, and negative only if it is less than zero.
Integers in ML/I are represented to a decimal base.

(c) When it is necessarv to emnhasize that a zero is not the

letter "Oh”, the zero is crossed, e.a. #. Zcroes are not
crossed, howaver, where the contoyt makes it ohviona that
a zero is meant.

1/4

1.5 Improving ML/I

Readers are invited to criticize and suggest improwements
in the specification of ML/I, in the description in this manual
or in a particular implementation, and irn particular to point out
errors and amoiguities. Reports of implementation errors should
Le accompanied by enough material to reproduce the error and, if
applicable, references to the statements in this manual that have

been contravened.

2/1

Chapter 2 +the environment and its constituents

o

2.1 sasic action of ML/I

The bazic accion of IiL/I is as Zollows. ‘The user ifeeds to
ML/I some text and an environment. The vurpose of the environment
is to specify that certain insertions, deletions, expansions,
translations or other modifications are to be made in tine text.
HL/I performs the textual changes specified by the user. This
process is called cvaluation of text, and the text cenerated as a
result of the changes is called the value text. The text being

avaluated is called the scanneg¢ text. In many simple applications
of IL/I, the process of evaluation consists of a ¢ood deal of
straignt ccpying, the value oming the same as the original, but
pelloalcally a change is made an¢ the generated value text is
different from the original scannea text,

The purpose of this Chapter is to explain ‘the mecnaniswms at
the disposal of the user and to giwve exampleb of tuneir use. All
the possible constituents of the environment will be d&escribed
and the resultant textual cihanges will be explained by describing
the form oi the scanned text and the form of the corresponding
value in each case. The mechanisms for setting up the enviroament
will ke explained 1in subseguent Chapters.

2.2 Chharacter set

The cuaracter set of L/I, i.e. the set of allowable characters
in the text it processes, is implencntation~defined (see Section
3 ¢f relevant Appendix). However, the character set will normally
contain a primary (upper case) set of letters A ~ Z, the numbers O - 9,
and a nurber of characters that are not letters or numbers. Characters
that are not letters or numbers are called punctuation characters.
(If input is from cards thc characters tab and newline will not
normally physically exist as characters on the cards. However the
input routine may artificially add the character “anewline” at the
end of each line and might possibly have sorme arrangeuent for
inserting tebs as well., Gee Section 32 of releovant Appendix fox
details.) If an iwmplementation contains both upper and lower case
letters in its character set, then tuese are treated as entirely
different sets of characters and it is not possible to use a 1ower
case letter interchiangeably with its upger case egnivalent.

2.3 Text

A reature of ML/I is that it does not consider text
character by character but in units of atoms. &n atom is a single
punctuation character or a seguence of letters and digits that
is surrounded by punctuation characters (assumlng an imaginary
punctuation character at the beginning and end of the text).

There is no restriction on the length of an atom. To take an
example, the text:

PIG , TAB LAC SPACE 4057

i 2 3 4 5 6
would be regarded as six atoms as shown.

The following definitions will be used in the rest of this
manual. Yext is a (possibly null) seguence of atoms. The source
text is the text supplied as input to ML/I, and the output text is
the text derived from evaluating the source text. The physical
form of the source text and output text is implementation-~defined
(see Section 2 of relevant Appendix). The actici of evaluating
a particular piece of source text is called a process.

2.4 Macros and delimiter structures

Before defining a macro it may be useful to consider the
sort of text replacement that macros are designed to achieve.
PDP-7 iissembly Language will be taken as an example (but it will

not be assumed the reader is necessarily famlllar with this language)

Assume the user wishes to intrcduce a new instruction of form:
ESUB X meaning “"subtract X from the accumulator"”.

Now this instruction is not in the PDP~7 instruction set but its
effect can be achieved by tine three instructions:

CHA complement accumulator.
ADD X add X to accumulator.
CHa complement accumulator.

=4

2/3

ey,

ire introduction of ESUB would be acinieved 2 faollows., The user
woulid write his program as if ESUB were an oxtra wmachine instyuction,
Before the program was assemncled it would be passed througn i/ i
with B8UB defined as a macro name with the avove three instructions
as its replacement text. wL/1 would replace cach occurrence of

ESUB Ly ite expanded forr and the resultant output text could then
be essembled normally. Baun plece of text to be repiaced is called
a wacrco calli and the text corrssponding to X avove 1s called the
arqument of the call. (Within the replacement text of ESUB it §
necessary to specify that the srgument of the call saould be insected
lminediately after ADD. This is done by a coastituent of the
environment called an "insert”, whicn will be described laster.)

This eygample serves as a simple lllustration of the primary
use of iiL/I, nasmely tc serve as a preprocessor Lo an existiny pieew
of software to ailow the user to introduce pew statements of his own
design into the existing language. Bach new astatement must be
ezxpaniible in terms of the existing language.

Macres way have any numbey of arguments. Arguments are
seperated by predafined atoms or seguences of atoms callad delimiters.
When defining a macro, the user spacifies what tae delimiters are.

The macro nane is reyarded as a deliniter and is called the name
delimicer to distinguish it from tne remaining delimiters, wiiicn
are catled ancondary aglimiters. The delimiter fnl‘ow;ng the last
@*;umgnt of the call is calied tne closing aeiimiter. uYne general
form of a macre call can, thexefore, be repres ented as:

name delimiter [argument secondary delimiter * 2]

Arguwrents may be null hut dslimiters must consist of at least
ong atom.

Every time ML/I encounters in the scannad text an atom or
eries o3 atoms that has been defined as a macro name, 1t searches
fur tite sec sndary delimiters (il auny) and then replaces the entire
macire «all by the wvalue of the replacenent texc for the macro. Mors
cetalls of the way macro calls are gcanned are glven in Secticons
3.3 and 3.4.

2.4.1 Examples of macios

It may b2 instruccive at this stage to cvonsider a few more

2/4

examples of macros. These examples, which are listed below, are

all of simple macros with fixed delimiters. wacros with more
elaborate patterns of delimiters will be considered later. HNote

that ML/I could be used to add these macros to any desired proyramning
language, whether high ox low level.

Example 1 A macro to generate a loaop, which has form
DO arg A TIMES arg B REPEAT

Here the delimiters are DO, TIMES and REPEAT. DO is
the name delimiter; and TIMES and REPEAT are secondary
delimiters. REPEAT is the closing delimiter. HL/T
does not require that macro calls be written on a
single line, and calls of this macro would tend, in
practice, to span several lines of text.

Example 2 A macro of form

MOVE FROM arg A TO arg B;

The name of this macro consists of the two atoms
"MOVE FROM".

Example 3 A macro to interchange two variables, which has form

INTERCHANGE (arg A, arg B) NL

In this example both the name and the closing delimiter
consist of more than one atom. Wote that L/I does
not, like some software, truncate long names such as

" INTERCHANGE" .

Example 4 Assume that within a program two different names,
COUNT and COWT, have inadvertently been used for the
same variable. Then this error could be corrected
using ML/I with CONT defined as a macro with COUNT
as its replacement text. Here the name delimiter,
CONT, is also the closing delimiter.

2/5

The reader should, at thig stage, asppreciate why ML/I
considers text as a seqguence of atoms rather than a sequence of
individual characters. If the latter were the case, ML/I would
be liable to take names such as DOG and KANDOM as calls of the
above macro DO since each name contains the letters "DO". As the
situation stands, however, the letters "DO" would only be taken as
a macro call if they were surrounded by punctuation characters.

2.4.2 Delimitef structures

The macros considered so far have had fixed delimiters.
However, it is possible to have macros with any number of alternative
patterns of delimiters. As a very simple example of this consider
the ESUB macro. In PDP~7 Assembly Language statements are terminated
with either a tab or a newline, and so it would be desirable
to allow both of these as alternatives for the closing delimiter
of ESUB.

In order to specify the patterns of possible delimiters
of a macro the user specifies a delimiter structure. Each macro
has its own delimiter structure and other constituents of the
environnent also have delimitexr structures. A delimiter structure
is a set of delimiter specifications, each of which is a sequence
of one or more atoms. These seguences of atoms need not be distinct.
Cne or more of these delimiter specifications are designated
as names of the structure. The remezinder are seccndary delimiters.
With each delimiter specification is associated a specification
of its successor(s). This may be

(a) null,
or (b) another delimiter specification within the
structure,
or (¢} a set of alternative delimiter specifications

within the structure.

Successors specify what to search for next when scanning. A
delimiter withh a null successor is a closing delimiter. As an
illustration of the use of a delimiter structure consider the
scanning of a macro call. During this scanning, eacn time a
delimiter is found, the delimiter structure of the macro being
called is referenced to find the successor(s) of the current
delimiter and subsequent text is then scanned to try to find this
successor. This process continues until a closing delimiter is
found.

2/6

As an example of a delimiter structure, the delimiter structure
of the ESUB macro would contain three delimiter specifications with
the following information about them:

(a) ESUB name with (b) or (¢) as its successor.,
(b) TAB secondary delimiter with no successor.
(c) WL secondary delimiter with no successor.

The rules for setting up delimiter structures (see Section
5.1) ensure that they have certain properties. Among these properties
are the foliowing:

(a) If there is more than one name each name is represented
by a different sequence of atoms.

(b) If a delimiter specification has alternative successors
each is represented by a different sequence of atoms.

(c) The structure is connected. This means that it must be
possible to reach each secondary delimiter by a sequence
of successors from some name.

2.4.3 Optional and repeated delimiters

It is possible, by designing a suitable delimiter structure,
to have a macro with a variable number of arguments, in particular
a macro with optional arguments and/or with an indefinitely long
list of arguments. For instance, suppose it is desired to implement
a macro with alternative forms:

IF arqument THEN argument
END

and IF argument THEN argument
ELSE argument
EWD

This is done by specifying that either ELSE or END is the successor
of THEN. END is a closing delimiter and ELSE has successor END.

2/7

As a second @lhample ~onsiGSe & malrc of Fform:

SUM argument | gf; argument*?] ;

This macro nas an indefinite number of arguments, separated by

plus or minus signs. Its delimiter structure has four members
as follows: '

(a) SUM name with (b), (¢) or (d) as successor.

(b) + secondary delimiter with (b), (c) or (d4) as
successor.,

(c) - secondary delimiter with (b), (c) or (d) as
successor,

(a) ; secondary delimiter with no successor.

2.4.4 Macro definitions

Now that the basic concepts behind macros have been introduced,
it is possible to explain more exactly what makes up a macro
definition. MNacro definitions are the most important constituents
of the environment. A macro definition consists of: ~

{a) A delimiter structure. The name delimiter{s) of this
structure are the macro names.

(b) A piece of replacement text.

(c) An integer exceeding two called the capacity, the
purpose of which is explained in Section 2.6.1.

(d) An on/off option. If this option is on, a macro
is called a normal-scan macro. Otherwise it is called
a straight-scan macro. The effect of this option is
explained in Section 2.10.

The reader need not for the moment concern himself with (c)
and (d) since nearly all macros will be normal-scan and will have
capacity three.

2.4.5 The difference between macros and subroutines

There is often confusion between the purpose of macros and

2/8

the purpose of subroutines. Macros, fivwover, always generate
in-line code and so this ccde is inserted as mwany times as the
macro is called. Subroutines use out-of-lines code and there

is only one copy of this ccde for a particular prcegram. Thus
macros are used only when the code to be inserted is short or
highly parameterized. I* would not be convenient, for instance,
to use subroutines to perform the functiong of any of the macros
used as examplec in previous Sertions,

2.4.6 Impossible replacements

It is worth noting some of the types of replacement that
it is not possible to perform by means of macrxos. Below are two
examples of illegal syntax of macrc calls, together with possible
correct forms.

(a) Wrong arg A = arg B; since 2ach macro call must
start with a macro name.

Right SET arg A = arg B ;

(b) Wrong §$ character It is not possible to define
an argument as the character
(or atom) immediately following
a given name. Every argument
must be followed by some pre-
defined delimiter.

Right §$ argument ;

2.5 Introduction to macro~time varilables and statements

The form of the value of a call of such macros as the IF
and SUM macros used earlier as exanples would have to depend
on the particular patterns of delimiters that were used in the
call. Fox instance:

SUM ALPHA + BETA ;
rnust generate an entirely different set of instructions from:
SUM ALPHA - BETA - GAMMA + X + ¥ -Z;

and, in the case of IF, the form of the value text must depend

2/9

upon whether ELSE was-present. Hacros sucb as these, therefore,

are morc complicated than the ESUB case, where a fixed skeleton

of code consisting of three machine instructions is substituted

for each call. The only variawvle eleient in the ESUB case is the
form of its argument. In the more complicated cases, where the
delimiters provide a second variadble element, the user has to

write a little program which is executed by ML/I and tests the form
of the cdelimiters used and generates code accordingly. In the

case of SUM, which has an indefinitely long list of arguments

and delimiters, this program would involve a simple repetitive

loop to iterate through the list. Hence ML/I contains an elementary
programming language of its own. This language contains an assignment
- statement, a conditional GO TO statement, labels and integer
variables. All these are called macro-time entities to distinguish
them from the corresponding execution-time entities, and the reader
must be careful not to confuse the twc. The difference is illustrated
thus: the DO macro of Section 2.4.1 would generate a loop which

was performed at execution-time and controlled by an execution-

time variable; on the other hand the value text for the SUM macro
would be cenerated by a macro-time loop controlled vy a macro-

time variable.

Macro variables and macro lavels are considered in the next
Section. Macro-time statements are considered in detail in Chapter
4.

2.6 Inserts

This Section describes how gquantities can be inserted into
text. In particular it describes how arguments oi macro calls
are inserted into replacement text. However, f£irst it is neccessary
to consider some of the guantities, in addition to arguments,
that may be inserted into text.

2.6.1 Macro variables

Macro variables are integer variables available to the user
at macro-time. ML/I contains facilities for periforming arithmetic
on these variables, testing their values, and inserting their
values into the text. They are useful as switches and for counting
(e.g. in processing macros with a variable number of arguments).

2/10

There are three kinds of macro variable, namely:

(a) permanent variables, referred to as Pl, P2,....

(b) system variables, referred to as S1; S2,....

(c) temporary variables, referred to as Tl, T2,....

Permanent and system variables have glokal scope; this
means they can be referred to anywhere. An implementation-defined
number of each is allocated at the start of each process and
these remain in existence tiiroughout. The user may allocate
extra permanent variables (but not system variables) if he likes
(see Section 5.4.4). The difference between permanent and system
variables is that the former have no fixed meanings and are free
for the user to use as he wishes, but the latter have fixed
implementation-defined meanings associated with controlling
the operation of ML/I. For example in a given implementation
520 might control the listing of the source text; if it was zero
no listing would be produced and if it was one there would be
a listing. Sections 5 and 7 of each Appendix describe the meanings
of system variables (if any) and state the number of permanent
and system variables that are initially allocated. »

Temporary variables, on the other hand, have a more local
scope. During tne evaluation of the source text there are no
temporary variables in existence. However,; each time a macro call
is made a number of temporary variables is allocated and these
remain in existence while the replacement text of the macro is
being evaluated. The number of temporary variables allocated at
the call of a macro is given by the capacity of the macro (see
Section 2.4.4). The capacity is usually three. If temporary
variable N is referenced during the evaluation of the replacement
text of a macro call, this is taken to mean the Hth temporary
variable associated with the call. Since, as will be seen later,
it is possible to have macro calls within macro calls, it is
possible to have several allocations of temporary variables in
existence at the same time.

2.6.2 Initialization of macro variables

The initial values of all macro variables are undefined
except for the values of the first three temporary variables of
each allocation, which are initialized as follows:

2/11

Tl the number of arguments of the current macro call:

T2 the nuaber of macro calls so far performed by ML/I
during the current process. The imgortance of this
number is that it is unique to the current call;

T3 the current depth of nesting of macro calls (i.e.
the number of calls, including the present one, currently
being processed; calls of operation macros (see Section
4.1) are not counted here, though tney do count toward
the setting of T2j. :

It is to be emphasized that these are initial values and
the user is free to change them if he wishes. (In this way
temporary variables are unlike system variables. If the values
of system variavoles, even those without assigned meanings, were
changed arbitrarily it might have a tragic effect.)

2.6.3 Subscripts and macro expressions

In the previous Sections macro variables were specified
by a letter followed £y a number (e.g. P2), but there are other
possibilities. The general form of a macrc variable is:

(®)
(S) subscript
(T)

where a subscript is an unsigned pesitive integer or a macro
variable. The value of the subscript specifies the macro variable
to be reiesrenced. Thus if T3 has value 4, then PT3 would specify
P4. As a more conplicated example, if Tl had value 2 and P2

had value 6, then TPT1l would specify the sixth temporary variable.

iMacro variables can be combined into macro expressions,
which are used when it is desired to perform aritnmetic calculatiouns
during macro generation. Examples of macro expressions are:

1, -6, 3-81, =-TTL-145/824P3+&

Multiplication is represented by an asterisk. The general form
of a macro expression is:

2/12

primary 1

PR PN

primary * 2]

[N
Nt St e

where a primary has form:
[(+) * 2] operand
(=)

where an operand is an unsigned integer or a macro variable,
Redundant spaces can occur anywhere in macro expressions except
within operands,

The result of a macro expression is the integer derived
from calculating the expression by the ordinary rules of arithmetic.
Unary operators are performed first, followed by the binary
operators from left to right with the proviso that multiplication
and division take precedence over addition and subtraction,
Division is truncated to the greatest integer that does not exceed
the exact result. Division by zero is detected as an error.
Examples are:

(a) 1+2 %3 has result 7.

(b) 3% 7/8 has result 2.

(c) 7/8 * 3 has result O.

(a) - 5/4 and 5/-4 both have result -2.
(c) - 4/-3 * -6 has result - 6.

2.6.4 Integer overflow

Each implementation has a maximum absolute value which
must not be exceeded by any integer derived during the calculation
of a macro expression or subscript. The effect of exceeding this
value is implementation-~defined. See Section 5 of the relevant
Appendix for details.

2.6.5 Macro labels

Since there is a facility for a macro-~time GO TO, there
is also a facility for placing macro-time labels. These are
called macro labels. Hach macro label is designated by a unique

positive integer.

2.6.6 rlacro elements

flacro variables, macro labels, arguments and delimiters
are collectively called macro elements. It is convenient to regard
macro elemeants as part of the environment. The full details of
how macro elements are added tc the enviromment are explained
in Section 4.4, but in essence the rule is that every time a
macro is called its arguments and delimiters plus a set of temporary
variables are automatically added to the environment and this
supplemented environment is used to evaluate the replacement
text of the call. Similarly when a macro label is encountered
its position is "rewmembered" by adding it to the environment.

2.6.7 Insert definitions

It is now possible to define the constituent of the
environment, called an inserxt definition, which is used for
such purposes as to tell ML/T to insert a particular argument
of a macro at some point in its replacement text. An insert
definition consists of:

(a) A delimiter structure. Since all inserts have fixeq
delimiters and exactly one argument, this delimiter
structure will be a simple one. It will consist of
a name with a single successor, this successor being
a closing delimiter.

(L) An on/off option. If this option is on, an insert
is called protected; otherwise it is called unprotected.
The use of this option,; which need uodt be of much
concern to the average reader, is described in Section
4.5,

At each point where the user wishes something to be inserted
he writes the following construction, called an insert:

insert name arqument delimiter

In the rest of this manual, for the purpose of examples, it will
be assumed that the atom "%" is an insert name, with the atom u
as its closiug delimiter. With this assumption the following are

S 2/

examples of inserts (the exact meaning of these will hecome. apparert
later):

Tehe. sPl. SLI2. $WA P9-16%T3,

On encountering an insert, MI./I evaluates the argument of
the insert (in case it contains macro calls, etc.) and the resulting
value text acts as a specification of what to insert. The value
text must consist of a flag followed by a macro expression. 1In
the first above example the flag would be A and the macro expression
would be 6. The flag may be null or it may be any of the following:
A, B,D, L,WA, W5 or WD. Any number of redundant spaces is allowed
before, after or within a flag.

The meaning of the various flags are explained below. In
each explanation "W" is used to represent the value of the macro
expression following the flag., ilore examples are given in the next
Section. An attempt to insert something which does not exist
(e.g. the thlrd argument of a macro with only two arguments) results
in an error. +“he meanings of the flags are:

(a) A. This flag is used within the replacement text of a
macro to evaluate and insert the Nth argument of a call
of the macro. Any spaces at the beginning or end of
the argument are deleted before it is evaluated. 1In
the case of this flag and in cases (b) and (c) below
the piece of text that is evaluated and inserted is
calied the inserted text.

(b} B. As case (a) except that spaces are not deleted.

(c) D. As case (b) except that the Wth deliniter, rather
than the wth argument, is inserted. The name of a
macro is considered as delimiter zero, and the Nth
delimiter is thus the delimiter following the Nth
argument.

(a) WA, WB, WD. As cases (a) to (c), respectively, except
that the inserted text is not evaluated but is inserted
literally, exactly as written. ('W' stands for “written".)
The difference between this and the previous cases arises
if the inserted text itself involves macro calls, inserts,
etc. In the previous cases these are evaluated; in
this case they are not.

(£)

2/15

Null. The nunerical wvalue of N, represented as a
character string, is inserted. This character string
containe no redundant leading zercs. It is preceded
by a minus sign if N is negative; otheirwise no sign
is present.

L. This is used to place a macro label and is rather
different from the above cases in that nothing is
inserted (i.e. the value of the insert is null). The
label N is, if acceptable, added to the current
environment and may be the subject oi a macro-time

GO TC. A macro label is acceptable if it is inserted
within a pizce of replacement text or inserted text
and has not already been defined within that text.

It is legal to insert a label in the source text but
since, as will be seen later, it is not possible to
have a backward GO TO within the scurce text, 'such
lapels are not added to the environment (i.e. they
are "forgotten®). wmacro labels are local to the
piece of text in which they occur, and there is no
harm in using the same label numbers within different
Dieces of text. Label numbers can be chosen arbitrarily,
except that they must be positive.

2.6.8 Examples of inserts

The following examples illustrate the use of inserts:

(a)

The replacerent text of the ESUB macro of Section 2.4
might be written:

C.iA
ADD . SAl.
CHA NL

or even:
C!riA
ADD $AL.
CMA 01,

The latter form would have the advantage of inserting

(b)

(c)

(4)

(e)

2/16 S

newline or tab according to which_ one was written
in the calil.

In the case of the DO macro of Section 2.4.1 the
replacement text would involve an execution-time
label. It is imperative that a different execution-
time label be generated for each call of DO. This
could be achieved by using the initial value of T2.
The label could, for example, be written:

Z2%T2.

In this case if two successive calls of DO occurred
at the start of the source text then 221 would be
generated at the first call and ZZ2 at the second.

If SWITCH is a macro name with replacement text Pl,
then it is possible to write:

FSWITCH.

to insert the first permanent variable. The reason

is that the argument of an insert is evaluated before
being processed and the call of the SWITCH macro would
be performed during this evaluation.

The occurrence of %Al. in the replacement text of
the macro call:

HOVE FROM JACK TO JOHN;

would cause JACK to be inserted, wnereas the occurrence:
of %Bl. would cause JACK enclosed in spaces to be
inserted.

If it is desired to insert the name of a macro into
its replacement text this can be done by writing
“SWD@." {(The reason for having this facility is
that macros can have several alternative names.)

In general it would be wrong to use %D¢. instead,
since this form causes any macro calls within the
delimiter to be performed. But delimiter zero is
the macro name itself and hence an endless recursive

2/17

loop is likely. . Tn.fact when incerting delimiters
it is usually better to use a "W".

(£) This example rather jumps the gun in that it uses
the macrc~time statements HNCSET and MCGO winich have
not yvet been defined. Eowever, if the reader cares
to try to understand tinis example at this stage it may
give a useful insight into the purpose of the preceding
material. Tie example shows how the replacement
text of the SUM macro could be written. (The comments
at the side are for the reader's benefit and do not
form part of the replacement text.)

LAC $Al, Generate code to load
accumulator with first
argument.

MCSET T2 = 1 ‘ Use T2 as loop counter.

21.4.MCGO L1 IF%DT2. = + Test if current delimiter

is plus

MCGO L2 IF%DT2. = ~ or minus.

MCGO L@ If neither then exit. (L@
has a special meaning, namely
"return®.)

g$L2. [ESUB %AT2+1. Generate code to subtract

current argument.

MCGC L3

%Ll. ADD 3%AT2+1. Generate code to add current
argument.

3L3. MCSET T2 = T2+1 Increase T2 and continue loop.

MCGO L4

2.7 Skips

The description so far has implied that every occurrence
of a macro name in the scanned text is taken as the start of a

2/18

macro call. This would mean that the user had no easy means of
getting macro names or, for that matter, insert names into his value
text. Moreover, if he were unfortunate enough to use a macro name

in his comments, then ML/I would take this as a macro call and

would start searching for delimiters. To get round these difficulties
the user places skip definitions in his environment, and by this

means can cause ML/I to icnore comments and to take certain strings

as literals. ‘

A skip definition consists of:

(a) A delimiter structure. The names of this structure
are called skip names.

(o) Three on/off options. These options are: the text
option, the delimiter option and the matched option.

The action of ML/I on finding a skip name is similar to the
action on finding a macro name. In both cases a search for
delimiters is made until a closing delimitex is found. The text
from the skip name to its closing delimiter is called a skip.

A skip, therefore, has form:

skip name |[argqument secondary delimiter *2]

In most practical applications of skips there will be exactly

one argument. The arguments cof skips are treated as literals,
exactly as if all macro definitions, insert definitions and warning
markers (see later) had been temporarily removed from the environment
during the scanning of the skip. There is no replacement text
associated with a skip; instead. the value of a skip is defined

simply by the setting of two of its options. These options, which
are independent of one another, have the following effect:

(a) If the delimiter option is on, then the delimiters of
the skip are copied over to the value text, otherwise
they are not.

(b) If the text option is on, then the arguments of the
skip are copied over to the value text; otherwise
they are not.

2/19

As an example of the use of a skip assume the source text
contains comments that Legin with the word COMMENT and end with
a semicolon. In order to skip these comments the user would define
COMMENT as a skip name with semicolon as its closing delimiter.
In this case if the following comment occurred:

COMMENT THIS DO LOOF ZEROIZES ARRAY X;

then its value (i.e. the piece of text copied cover to the value
text) would be one of the following:

(a) If buth options were on, its value would bke:

COMMENT THIS DO LOOP ZERIOZES ARRAY X;

(i) If neither option was on its value would be null.
(c) If conly the delimiter option was on its value would
be:
COMMENT ;
{d) If only the text option was on tinen its value would
he: '

THIS DO LOOP ZERIOZiES ARRAY X

If COMUENT was not defined as a skip at all then comments
would normally be copied over to the value text as in case (a).
However, if in the above example DO was a macro name then ML/I
would try to find the delimiters of DO and replace the call of
DO by its replacement text. This is clearly undesirable. The
chances are the entire source text would be scanned without finding
the required delimiters. Hence the use of skips to inhibit the
recognition of macro names within certain contexts.

Tt will be assumed in the rest of this manual that CQuMMENT
is a skip name with semicolon as its closing delimiter.

2.7.1 Matched skips and straignt skips

Assume the user has written the comment:

COMMENT THIS COMMENT MARKS THE HALF-WAY STAGE;

S 2/20

In this case the skip neme COMMENT appecxe.within an . argument
of the skip CCHMENT. However, it 1is clearly undesirable that
1L/I should treat the second COMMENT as a nested skip and try
to match it with a semicolon. To prevent this happening
COMMENT would be defiaed as a skip with the matched option
off. This is called a straight skip.

However, there are applications of skips where it is
desirable for nested skips to be recognised, and such ski s have
the matched option on. They are called matcned skips. ni.:amples
of applications of matched skips are "strings" in Algol, which
allow nested string quotes and "literal brackets", which are
described later. If ML/I encounters any skig name during the
scanning of a matched skip it matcanes the nested skip with its
delimiters before matching the containing skip with its delimiters.
The scanning process is described in more detail in Section 3.4,
in a nest of skips the value is entirely controiled by the options
associated with the outermost skip.

2.7.2 Literal brackets

It is usual to have in each environment a skip definition
consisting of a name and & closing delimiter with the optiocas
set in such a way that at every occurrence of the skip the argument
is copied and the delimiters deleted. Such skips are called literal
brackets. It will be assumed in the rest of this manual that the
pame '<' with closing delimiter '>' have been defined as a pair
of literal brackets. If it was required to copy a piece of text
literally over to the value text, ignoring all macro calls and
inserts, then the text would be writtens:

< text >

The process of evaluation would consist simply of removing the
jiteral brackets. Literal brackets always have the matched option
on. The reason for tihis will become apparent in Section 4.2,

2.7.3 Example of a matched skip

The following example, which is rather more complicated
than any situation likely to arise in practice, illustrates the
full implications of the rules for the matching of skips.

2/21 -

Example In the text:

< AAA < BBB COMMENT < ; ©CC > LDD >
the initial “<" is matched with the last ®v". {The occurrence
of "<" after COMMENT is not recognised as a skip name since
COMMENT is a straight skip.) The value of this text is:

AAA < BBB COMMENT < ; CCC > DDD

This value is independent of how the delimiter and text options
for COMMENT are set.

2.8 Warning markers

Up to now, ¥L/I has been described as if every occurrence of
a macro name not within a skip is taken as a start of a macro call.
In fact this is only true if the environment is in free mode.

if he wishes, the user may place the environment in
warning mode by defining one or more wariing markers. Any
atom or series of atoms may be defined as a warning marker.
In warning mode each macro call must commence with a warning
marker. Optional spaces are allowed between the warning marker
and the macro name which follows it. Thus if CALL were a warning
marker, the ESUB macro would be called by writing:

CALL ESUB X NL

In warning mode each occurrence of a warning marker must be followed
by a macro name. Any macro name not preceded by. a warning marker
is not recognised as such.

The essential difference between warning mode and free mode
is that in the first case all macro calls have to be specially
marked by preceding them with warning markers whereas in the second
case all macro names that are not to be taken as macro calls have
to be specially marked by enclosing them in skips.

Note that warning markers only apply to macro calls, and
must not be used to precede inserts or skips. These latter are
always recognised, irrespective of the mode of the scan.

2/22

2.9 Summary of the environment

All the constituents of the environment have.now been defined.
To recap these are:

(a) Macro definitions.

(b) Insert definitions.

(c) Skip defianitions.

(d) warning marker definitions.

(e) Permanent variables,

(f) System variables.

(g) Temporary variables.

(h) Arguments.,

(i) Delimiters.

(j) Macro labels.

The term construction is used as a collective name for
skips, inserts and macro calls and the term name environment
is used as a collective name for constituents (a), (b), (c) and

(d) above since the names of these constituents are used to
recognise constructions in the scanned text. '

2.10* Normal-scan macros and straight—-scan macros

This Section explains the difference between normal-scan
macros and straight-scan macros. However, straight-scan macros
have only limited uses and the reader may choose to skip this
Section and assume that all macros are normal—-scan.

The difference between the two types of macro arises in
the scanning of macro calls. In the case of a normal-scan macro
constructions nested within the call are recognised, whereas in
the case of a straight-scan macro the effect is as if the name
environment were temporarily removed during the scanning of the o
call. 2As an example of the use of a straight-scan macro, consider
a language where comments are commenced with the word NOTE and
ended with a semicolon. Assume it is desired to use ML/I to
map this language into a language where comments are enclosed
between the atoms "[" and "]". It is not possible to achieve

2/23

this transformation by the use ¢f skips ecince the options on skips
éo not permit the insertion of extra characters and normal-scan
macros are inadequate since it is nct desired to recognise macro
names within comments. Hence NOTE would ke defined as a straight-
scan macro. 1ts replacement text would be:

[awal.]
Tlie replacement text of a straight~scan macro is evaluated in
exactly the same way as that of a normal-scan macro.

The reader will no doubt have noticed that there is an
analogy between the two types of macro and the two types of
skip. In fact any straicht skip can be represented as a straight-
scan macro. However, straight skips are preferable, where possible,
since they are slightly easier to define and much faster in execution.
The analogy between normal-scan macros and matched skips is not
so close. Normal-scan macros permit any constructions to be nested
within calls of them whereas matched skips only allow further
skips to be nested within them.

The straight-scan option can only apply to user-defined
macros; it cannot apply to inserts or to operation macros (see
Section 4.1).

2.11 Name environment used for examples

To avoid unnecessary repetition, a fixed name environment
will be assumed in all subsequent examples. This environment
consists of:

(a) The atom "%" with closing delimiter "." as an insert
definition.

(b) The atoms "<" and ">" as literal brackets.

(c) COMMENT as a straight skip with closing delimiter
semicolon.

{d) The DO and MOVE FROM macros of Section 2.4.1.
(c) The ESUB macro of Section 2.4.
(f) No warning markers.

All the macros above are taken to be normal-scan.

3/1

Chapter 3 Text scanning and evaluation

3.1 Nesting and recursion

Constructions may be nested to any desired depth, and may
appear within replacement text. Furthermore, recursive macro calls
are allowed. In other words, any construction is allowed with
any piece of replacement text or inserted text, and a nacro
may be called while evaluating its own replacement text. However,
constructions must be properly nested. This means that each construc-
tion must lie entirely within a single piece of replacement text,
entirely within a single pilece of insexted text or entirely within
the source text. Apart from this obvious restriction, ML/I contains
no restrictions on nesting and recursion.

As a result of nesting and recursion, the process of text
evaluation is in general a recursive one. At the beginning of
a process ML/I starts evaluating the source text. During this
evaluation it will in general encounter a macro call. This will
cause it to temporarily suspend the evaluation of the source text
and start evaluating the replacement text of the call. While
evaluating this replacement text, ML/I may encounter an insert,
and this will cause it to suspend the evaluation of the replacement
text and start evaluating some inserted text. Alternatively,
it may encounter a nested macro call. Thus at any one time several
pieces of text may be in the process of evaluation.

This situation is liable to lead to ambiguities in terminology,
so it is necessary to clarify some of the terms that will be usea.
The terms "the scanned text™, "the current environment"” and “the
‘current noint of scan® will always refer to the text actually
being evaluated, not to any piece of text whose evaluation has
been temporarily suspended. ML/I is said to be evaluating inserted
text if the scanned text is inserted text, and a similar definition
applies to “evaluating replacement text". ML/Y is said to be
evaluating the source text if it is not within the evaluation of
any macrc calls or inserts.

3.2 Call oy narnc

Arguments and delimiters are evaluated each time they are
inserted, rather than when the call in which they occur is scanned.

(3
S
R)

In other words they are "called Ly name® rathex thail "called by
value”. In most cases. cf course, this choice of approach makes
no difference to the final result, but it does have an effect if
the environment changes between the time an argument is scanned
and the time it is inserted.

3.3 Detalls of the scanning process

When text is evaluated it is scanned atom by atom until the
end is reached. All text, whether the source text, replacement
text or inserted text, is scanned and evaluated in the same way.
In general each atom of the scanned text is compared with all the
names in the environment to see if a match can be found. However,
as was seen in the previous Chapter, some types of name are not
recognised under certain circumstances. The complete list of
such circumstances is as follows:

(a) No names are recognised within a straight skip or
straight-scan macro call.

(b) Apart from skip names, no names are recognised within
a matched skip.

(¢) In warning mode macro names are not recognised except
after warning markers. Immediately after a warning marker
no names except macro names and no secondary delimiters
are recognised (unless an error occurs, see Section
6.3.4).

When a construction name is found a search is made for its closing
delimite:. This process is described in the next Section.

Some names in the envircnment may consist of more than one
atom. In this case when an atom of the scanned text is found to
natch the first atom of the name the scanning process looks ahead
to see if the remaining atoms of the name follow this atom.

(This look-ahead is abandoned if the end of the current text

is reached.) If a match is found scanning is resumed kevond

the last atom of the name. The user can specify for each pair

of atoms of a multi-atom name whether spaces between the atoms are to
Le ignored by the scan. Multi-atom secondary delimiters are
matched in exactly the same way as multi-atom names.

3/3

Apart from these casee of multi-atom delimiters the scan
always proceeds atom by atom. Dach atom not within a construction
is copied over to the value text. Atoms within skips may Or may
not be copied according to the option settings. Atoms within
macro calls or inserts are never copied over to the value text
since the very purpose of these constructions is to perform a
replacement.

3.4 The method of searching for delimiters

When ML/I encounters a construction name, it searches for
each of the secondary delimiters until the closing delimiter is
found (except in the case where the construction name is its own
closing delimiter, when no searching is required). In general
an error message (see Section 6.3.5) is given if the end of the
current piece of text is reached before the closing delimiter has
been found. In this case the construction is said to be unmatched.
Exclusive delimiters, however, provide a slight exception to this
rule (see next Section). If, during the search for the delimiters
of a construction, a nested construction is encountered, then the
search for the delimiters of the outer construction is suspended
until the closing delimiter of tihe nested construction has been
found. Nested constructions can only arise within inserts, matched
skips and normal-scan macros. Since arguments are called by name
rather than by value, nested constructions are not evaluated when
scanned over during the search for delimiters of a containing
construction. Evaluation occurs only when the argument containing
the nested construction is inserted.

The process of searching for closing delimiters is illustrated
by the following rather pathological example (remember that the
name environment of Section 2.11 applies to this and all subsequent
examples) .
DO 3 TIMES < REFPEAT DO >

ESUB REPEAT

DC REPEAT TIMES

REPEAT

REPEAT

3/4

In this example the first DO is matched with the last REPEAT,
since the search for the REPEAT for this first DO is suspended
during the scanning of the nested constructions <, ESUB and DO.
Furthermore the occurrence of DO within the literal brackets is
not recognised as a macro name,

In general, a single closing delimiter cannot terminate two
separate constructions. Thus two successive REPEATs are needed
in the above example to close both the DO macros. However, exclusive
delimiters again provide an exception to the rule.
As a further example, if the user were foolish enough to write:
MOVE FROM TO TO PIG;

then the first TO would he taken as the delimiter of MOVE FROM.
What he should write to make the second T0 the delimiter is:

MOVE FROM < TO > TO PIG;
However, there is nothing wrong with writing:
MOVE FROM PIG TO TO:

In practice, if delimiter names are chosen sensibly, problems
such as the above rarely arise.

3.5* Exclusive delimiters

(It is highly recommended that this Section be skipped on
a first :‘eading as it describes a rather complicated feature which
is only occasicnally needed.)

In the normal way, after a construction has been scanned over
and replaced by its value, scanning is resumed with the atom following
the closing delimiter of the construction., Hence the closing
delimiter is taken as part of the construction. In a few cases,
however, it is more convenient to regard the closing delimiter
as external to the construction. Such a delimiter is called an
exclusive delimiter. Only macros and skips may have exclusive
delimiters and exclusive delimiters are always closing delimiters.
After a construction with an exclusive delimiter has been dealt

3/5

with, scanning is resumed at the exclusive delimiter rather than
beyond it. '

Exclusive delimiters are useful when it is desired to use
a single delimiter as a closing delimiter of several nested construc-
tions. For example an IF macro might have form:

IF condition THEN nested macro call NL

where the nasted macro call is terminated, like IF, by the closing
newline. In this case, it would be necessary to cefine newline

as an exclusive delimiter of any macro that could be nested within
the IF macro. Then when the scan had used the newline to close
the nested macro call it would re-scan it and use it again to
close the IF macro.

A+difficulty arises in the above example when, within the
replacement text of IF, the second argument is inserted. The
problem is that the nested macro call is unmatched within this
‘argument, since its closing delimiter, the newline, lies beyond
‘the end of the argument. ML/I resolves this problem by using
the following rule; if, when inserting the Nth argument of a
macro call, a construction is unmatched then the Wth delimiter
is examined and if this delimiter (or a series of atoms at the
start of it) is an exclusive closing delimiter which closes the
apparently unmatched construction then this construction is considered
as matched and processing proceeds normally. If there is a nest
of unmatched constructions then this rule is successively applied
to all the constructions in turn. (In fact this rule is such
a natural one that the user micht not realize that there is any
logical problem at all.)

Note that it is quite legal to insert an exclusive delimiter
in the replacement text of the macro call to which it belongs.
It is even legal to define a name delimiter as an exclusive delimiter
(though this is almost certain to lead to an endless loop). Further-
more it is quite legal to have both exclusive delimiters and ordinary
closing delimiters within the same delimiter structure.

If a skip ends with an exclusive delimiter this closing
delimiter is not taken as part of the skip and hence it is not
affected by the delimiter option associated with the skip.

3/6

Exclusive delimitexrs are sometimee useful in slmple
applications where no nesting is involved. For instance it is
often desirable for a skip to delete up to, but not including,
the next newline.

As a more complicated example, consider a language in which
macro calls were one to a line with the macro name coming first
In this case it might be convenient to give newline a double
use: firstly as an exclusive delimiter of the macro on the previous
line and secondly as a warning marker to precede the macro name’
on the next line.

The way exclusive delimiters are defined is described at
the end of Section 5.1.3.

3.6* Dynamically generated constructions

The method of scanning, with the requirement that calls
be properly nested, means that all the delimiters of a construction
must be in the same piece of text. This rule, which is very
desirable since it leads to the early detection of genuine errors,
should be borne in mind by the user who wishes to generate
constructions dynamically, for example to combine at macro-time
separate pieces of text to build up a macro call. The rule
prohibits constructions like:

CHOOSENAME A TO B;

where CHOOSENAME is a macro with replacement text MOVE FROM, or
constructions like:

DO A 3Al. B REPEAT

where %Al. has value TIMES. It is however, quite easy to achieve
the object of these examples, namely to generate a delimiter
dynamically, and the reader who is interested in doing this
should refer to the example in Section 7.4.3.

4/1

Chapter 4 Operation macros and their use in setting up the
environment ‘

4.1 Operation macros

The macros considered so far have been concerned with making
replacements of pieces of text. In fact, strictly speaking, they
should have been called substitution macros. There is a second
type of macro called an operation macro. A call of an operation
macro causes a predefined system action to take place, for example
the setting up of a new construction. Operation macros are
an integral part of ML/I and are not, like substitution macros,
defined by the user. They are, however, part of the name environment
and are called in the same way as substitution macros. Examples
of operation macros are MCSET (which performs macro-time arithmetic),
MCDEF (which defines a macro), and MCGO (which is a macro-time
conditional GO TO statement). Examples of their calls are:

MCSET Pl = P2 + 1
MCDEF LNG AS LENG
MCGO .6 IF %$Al. = ACC

Chapter 5 contains complete descriptions of all the operation
macros. The names of all operation macros begin with MC to
minimize confusion with substitution macros. (The user is not
forbidden to start his own macro names with MC, but it is probably
less confusing not to.)

The arguments of all operation macros are evaluated before
being processed. Thus if TEMPNO were a macro with replacement
text Pl, then the following would be equivalent to the previous
example of MCSET: t

MCSET TEMPNO = P2 + 1

In most cases a call of an operation macro does not cause
any value text to be generated. No value text would be generated,
for instance, in any of the examples above. However, there are
two operation macros, MCSUB and MCLENG, which do cause value
text to be generated. These two macros are called system functions.
MCSUB is used for generating substrings of longer pieces of
text and MCLENG is used to calculate the length of a piece of text.

4/2

There ares no general restrictions on the use of operation
macros. They may be called from within any type of text, even
from within arguments to other cperation macros.

4.2 Use of literal brackets for surrounding operation macro

argumen ts

The fact that arguments of opsration macros are evaluated
before being processed has several advantages but it also has
its dangers, and in many cases the user will wish to inhibit
this argument evaluation. Consider as an example the last
argument of CDEF, which specifies the replacement text of the
macro being defined. A definition might be written:

E‘J.CDEF o e AS <o..%i\l- PR

If the abovs literal brackets had been omitted, ML/I would have

tried to insert the value 0of argument one at the time the macro

was defined (called definition time) rather than when it was called,
and an error would provapoly result. Occasionally, however, a user
might want to do this, in particular when one macro is defined within
another and the arguments of the outer ocne figure in the definition.
Apart from cases like this it is a good plan to use literal brackets
whenever specifying the replacement text of a macro. -

Another reason for tne usage of literal brackets arises when
the replacement text involves one or more newlines, e.qg.

MCDEF +.. AS <LINE 1
LINE 2
>

In this case, since newline is also the closing delimiter of MCDuF,
the newlines within the replacement text need to be prevented from
closing the MCDEF. The literal brackets, being a construction
nested within the call of :{CDEF, acihieve this.

It is now possible to see why literal brackets must be
defined as matched skips rather than straight skips. Consider
the following example, where a piece of replacement tex; itself
contains a call of MCDEF:

MCDEF MACL AS < ... |
.L"J.CDEF L»’.!ACZ‘ AS <) >
PR COMMEWT > 3 '
>
It is vital that the first "<" be matched with the last ">"

473

and not with-the occurrence of this symbol in a comment nor with
the occurrence in the nested MCDEF. The definition of literal
brackets as a matched skip accomplishes this.

4.3 NEC macros

Many of the operation macros have the effect of adding
to or deleting from the name environment. These macros are
called NEC (name environment changing) macros. The name environment
is set up dynamically by calls of NEC macros during text evaluation.
The initial state of the name environment is implementation-
defined (see Section 2 of relevant Appendix) but it will usually
contain just the operation macros. Changes in the environment
affect subsequent text evaluation but have no effect on value
text already generated. Constructions may be defined as eicher
local or global. Global constructions apply to all subsequent
text evaluation, whereas local constructions apply only to the
text in which they are defined, together with any macros called
from within this text (for exact details see next Section). A
local definition occurring in the source text has the same effect
as a global definition.

To start with, most users will probably not be very interested
in defining new macros in the middle of text evaluation. In this
case the entire name environment can be set up by a series of
NEC macro calls at the start of the source text, and all the rest
of the text can be evaluated using this name environment. Local
definitions should be used in preference to global ones where
possible since the setting up of global definitions involves more
work for ML/I. (iormally global definitions are only necessary
when it is desired to use one macro to set up the definition of
another. A reader who is not interested in changing the name
environment dynamicallv can skip the next two Sections. He can,
in fact, totally ignore global definitions and he need not worry
about the difference between protected and unprotected inserts.

4.4* Dynamic aspects of the environment

The value of a piece of text depends upon the state of the
environment when its evaluation is started. The purpose of this
Section is to define the initial state of the environment when
replacement text or inserted text is evaluated, and to explain
the effect of dynamic changes in the name environment.

4/4

It is convenient toc diwvide thie mame enviraonmment into two
parts:

(2a) The global name environment, which contains the names
of global constructions. Operation macro names are
treated as global.

(b) The local name environment, which contains the names of
local constructions.

If a substitution macro is called or if an argument or delimiter
is inserted, this cannot change the local name environment of
the containing text. However, any change in the global name
environment applies to the subsequent evaluation of the containing
text. In other words there is a single global name environnent
but each piece of text in the process of evaluation has its own
particular local name environment.

When a substitution macro is called, the replacement text
is evaluated under the following initial environment:

(a) the global name environment in effect when the call
is made. :

() +the local name environment in effect when the call
is made.

(c} the permanent aad systemlvariables.
(d) the arguments and delimiters of the call.

(¢) a set of temporary variables. These are allocated
when the call is macde. The number allocated is given
by the capacity of the macro called.

(f) no macro labels.

When an operation macro is called, no special environment
is set up and no temporary variailes are allocated. The arguments
of the operation macro are evaluated under the environment in
force when the call was scanned. The same applies to the argument
of an insert.

4/5

-~

Before considering the initial environment for the evaluation
of inserted text, it is instructive to consider an example that
will illustrate the reasons behind the rules. This example
involves passing arguments down from one macro to another.

Assume that within the replacement text of a macro XYZ it is
desired to call the MOVE FROM macro to move the second argument
of XYZ into a place called TEMP. This call of MOVE FROM would
be written:

MOVE FROM %A2, TO TEMP;

This call would cause the replacement text of the MOVE FROM macro
to be evaluated and during this evaluation it would be necessary
to insert the first arqgument of MOVE FROM. The insertion of this
argument involves the performing of the insert "%A2.". Now in
this case ML/I takes A2 to mean the second argument of XYZ, not
the second argument of MOVE FROM, The initial state cf the
environment for the evaluation of inserted text is set to make
this sc. This initial environment consists of:

{a) the current global name environment.

{(h) a local name environment. This depends on whether
the insert is protected or unprotected. See next
Section.

(c) the permanent and system variables.

(d), (e) the arguments, delimiters and temporary variables
that were in the environment when the call containing
the text to be inserted was encountered.

(f) no macro labels.

The reader may have noticed that no initial environment
contains any macro labels. This is because it is not possible
to use the MCGO macro to jump from one piece of text to another.
Thus each piece of text has its own macro labels, and macro labels
are not carried down from one piece of text to another.

4.5% Protected and unprotected inserts

The difference between protected and unprotected inserts
is best illustrated by an example. Consider a macro ABC whose

4/6

replacement text starts as followss

MCDEF TEMP AS LN
%Al -

Assume ABC is called with TEMP as its first argument. Then

1f "%" has been defined as a protected insert the value of

2A1. is TEMP. If it has been defined as an unprotected insert
the value is LMN. (MCDEF defines a local macro. If MCDEFG,
which defines a global macro, had been used in place of MCDEF
then the value of %Al. would always be LMN.) Hence the purpose
of a protected insert is to protect the insertion of a macro's
arguments or delimiters from any changes in the local environment
of the macro's replacement text. It is often useful, for
instance, to switch into warning mode when entering the replacement
text of a macro but still to evaluate its arguments in free

mode. In some applications the user may wish to define two
insert names, one protected and the other unprotected. In most
applications, however, it will be entirely immaterial which sort
of insert is defired.

To complete the definition of the previous Section, the
initial local name environment when inserted text is evaluated
is as follows:

(a) If the insert is a protected insert then it is the
local name environment that was in force when the
call containing the inserted text was encountered.

(b) If the insert is an unprotected insert then it is the
local name environment that was in force when the
ingert was encountered.

4.6* Ambiguous use of namesg

When defining new constructions the user should be careful
to avoid certain clashes of name. It would obviously be foolish,
for instance, to choose the name MCDEF for a new construction.
ML/I has a fixed set of priority rules for dealing with muitiply~
defined names, and these are listed below. However, for the reader
who is not interested in these complications the following simple
rule for defining new constructions is sufficient to avoid difficult
choose the delimiters to be different from all other emvironmental

a/7

names (i.e. the names of macros, inserts, skips and warning markers
in the current environment). It is guite acceptahle, of course,
to choose the same representation for the secondary delimiters

of different constructions. 7For example, all macres could have

a newline as their closing delimiter. Furthermore it is perfectly
in order to have séveral different names &ll beginning with the
same atom(s); for eample three separate macros could have names
RETURN, RETURN TO and RETURN IF. ML/I always tries to find the
longest name it can, so in this example it would only call the
RETURN macro if RETRUN was not followed by TO or IF. The reader
who is prepared to adopt the simple rule above can skip the rest
of this Section.

A nama clash is considered to occur if an atom or series
of stoms of the scanned text can be interpreted in more thau one
way. Note that some environmental names are ignored within certain .
contexts (see Section 3.4 for a complete list) and thus a name
cun sometimes be multiply-defined without a clash occurring.
For example, in warning mode it is unambiguous to have a macro
name the same as an insert name since each is recognised in a
different context. '

When a name clash does occur, the following rules are applied
in order until all ambiguity is removed:

(a) Exclusive delimiters take precedence over everything
else.

(b) A longer cdelimiter takes precedence over a shorter one
(as illustrated by the above RETURN example).

(c) Secondary delimiters take precedence over environmental
names.

-(d) TLocal environmental names takes precedence over jlobal
ones.

(e) 'he most recently defined environmental name takes
vrecedence.

4.7* Implications of rules for name clashes

Some implications of the rules in the previous Section are:

(a)

(c)

(a)

(e)

4/8

2 construction may be overridden by redefining it.
It is even possible to redefine a macro within its
own replacement text. If it is desired to achieve
the effect of deleting a macro name PQR from the
environment this can be achieved by defining PQR
as a skip using the MCSKIP macro of Section 5.2.3
as follows:

MCSKIP D, <PQR>

(PQR is enclosed in literal brackets to prevent it
being called.) This technique can be used for all
construction names. Note that when a construction
is redefined its o0ld use is not completely deleted
(no storage is released) and it is possible under
some circumstances to re—incarnate the 0ld usage.
For example the overriding use may have restricted
scope or it may be deleted by one of the macros of
Section 5.2.5, such as MCNOSKIP.

It is usually acceptable to chcose a construction
name to be the same as the secondary delimiter of
another construction. For instance there is no harm
in choosing IF as a macro name even though it is

a delimiter of MCGO. The only restriction on the
use of IF would be that it could not be called within
the first argument of MCGC. (This restriction only
applies in free mode. In warning mode there would
be no restriction.)

A technique (described in Section 7.4.8) can be
designed to give constructions different meanings
in different scopes.

If it is desired to design a language where each
macro call occupies one line, it is practicable to
define newline as an exclusive delimiter of each
macro and also as a warning marker or as a part of
a composite macro name (for instance NL GO TO could
be a macro name).

if eacnh of GO, GO TO, and TO THE END are macro names

4/9

then
GO TO THE END

is interpreted as a calli of GO TO, not as a call
of GO and a call of TO THE END. This is because
the rules of the previous Section are applied at
each step in the scan. There is no mechanism for
looking ahead and thus deciding, for instance, to
take a shorter delimiter at one step in order to
get a longer one later.

5/1

Chapter 5 Specification of individual operation macros

This Chapter contains descriptions of the operation macros
which should be present in every implementation. In addition,
each implementation may have its own particular operation macros
(see Section 1 of relevant Appendix) .

Arguments of operation macros are evaluated before being
processed in the same way as arguments of substitution macros.
Leading and trailing spaces are deleted before evaluation in
all cases.

Descriptions of the operation macros have been arranged
in a standard format which consists of a number of subsectinns.
These subsections in order of occurrence are described below.

(1) Purpose.

(2) General forn.

(3) Examples. Examples may not be comprehensible until
furcher subsections have been read. Each example
is independent of all the others.

(4) Restrictions. This subsection describes any restrictions
on the form that the values of the arguments of the
macro can take. If this subsection is omitted there
are no restrictions. The notation "ARG X" is used
to represent the value of the argument corresponding
to arg X in the General Form.

(5)* Order of evaluation. This subsection describes
The order in which arguments are evaluated. It
is omitted if the order is sequential. The order
of evaluation is, of course, immaterial in all but
the most pathological cases. Note that any change
in the name environment caused by the call of a
NEC macro does not come into effect until after all
its arguments have been evaluated. It is possible
for an operation macro to be aborted due to an error
before all its arguments have been evaluated.

5/2

-

(6) System action. This subsection describes-the action
performed by ML/I at a call of the macro. A reference
to "the current environment" means the environment
in force when the macro was called. Apart from the
system functions, all operation macros have a null
value.

(7) Notes. This subsection contains nothing new, but
attempts to bring out more clearly points implied
by the preceding material.

Before describing the individual operation macros it is
necessary to describe how to define delimiter structures, since
all the operation macros which define new constructions have an
arqument which specifies the delimiter structure of the construction.

5.1 Specification of delimiter structures

Delimiter structures are defined by writing a structure
representation, which defines all the delimiters in the structure
and the successor(s) of each. The atoms that make up a delimiter
are specified by a delimiter name, which is written in the
following way:

(WITH) 7

‘ x 2
atom [(wrTas) atem * ? |

The difference between WITH and WITHS is as follows. If two
atoms are linked by WITHS, this means that any number of spaces
(including none) may occur between the atoms when the delimiter
is used. WITH, on the other hand, means that no intervening
spaces are allowed.

As an example, the delimiter names of a macro of form:

COMPARE CHARACTERS argument 1 /// argument 2 ;

would be: : .
(1} COIMPARE WITHS CHARACTERS
(2) / WITH / WITH /

(3)

5/3

If,for some reason, it was deslred to restrict the number of
permissible spaces between COMPARE and CHARACTERS to one, then

this would be specified by:
{la) COMPARE WITH SPACE WITH CHARACTERS

Note that at least one space must be allowed between COMPARE
and CHARACTERS because otherwise they would not be recognised
as separate atoms. Thus, in the general case, a delimiter name
is in error if two atoms are connected by WITH and neither

atom is a punctuation character,

It is now necessary to consider how delimiter names are
combined to form a structure representation. In the simplest
case, the case of a construction with fixed delimiters, thnis
is done simply by concatenating the delimiter names in the order
in which they are to occur. Thus the complete structure
representations of some of the constructions used as examples
in this manual (see Section 2.11) are:s

(a) %.

(b) < >

(c) COMMENT;

(d) DO TIMES REPEAT

(e). MOVE WITHS FROM TO;

5.1.1 Reywords

Within a structure representation the atoms are separated
out by layout characters, i.e. spaces, newlines, tabs, etc.
(In the above examples spaces have been used.) Apart from acting
as separators, layout characters are totally ignored within
structure representations. Thus a problem arises when it is
desired to specify a layout character as a delimiter, or as
a constituent atom of a multi-atom delimiter. This problem
is overcome by using layout keywords to stand for layout characters,
In warticular:

SPACE means a space.

5/4

TAB means a tab.
NL reans a newline .

SPACES means a sequence of one ar more . spaces .

In(addition each implementation may have its ewn 23tra layount
keywords. See Section 6 of the relevant Appendix for details.
The characters represented by these keywords are treated as
layout characters and hence, within structure representations,
are exactly equivalent to newlines or spaces. Note that layout
keywords only apply within structure representations.

The following are examples of delimiter structures using
layout keywords
(a) ESUE NL
(b) SPACE
(¢) SPACE WITH SPACES (means two or more spaces)
(d) LD WITH SPACES SPACES HNL

A construction defined using (d) above, would be analysed thﬁs:

LD X ¥ NL
| 1 I]
NS N/
delimiter O delimiter 1 delimiter 2

Note how all the spaces following LD are absorbed into the name;
if they had not been defined to be part of the name they would
have been taken as the first delimiter.

It is permissible to use SPACES before or after WITHS;
in these cases it is exactly equivalent to SPACE.

In addition to these layout keywords, there are other
keywords that apply within structure representations. These
are: WITH, WITHS, OPT, OR, ALL and any atom commencing with
the letter 'ii' followed by a digit. Keywords are reserved
words and can not be used as the atoms of delimiters. However,
if it is necessary tc define, say, WITH as a delimiter name,
then the keyword WITH could be changed to something else (e.qg.
'+') by using the MCALTER macro described in Section 5.2.7.

5/5

5.1.2 The consequences of evaluation

Since structure representations occCur ae.arguments to
operation macros they are evaluated before being processed.
Two consequences of this, one beneficial to the user and the
other a nuisance, are as follows.

The beneficial consequence is that much-used alternatives
can be artificially generated. Assume, for example, that a
large number of macros have the form:

NAME (argument) NL

where NAME varies from macro to macro., In this case it would
be useful to define a macro PARENS with replacement text:

WITH () WITH NL
Then a macro DOG of the above form could be defined by writing:
DOG PARENS

The mischievous consequence arises if an attempt is made
to redefine a macro. Assume that a macro EMPLOYEE is defined
thus:

MCDEF EMPLOYEE AS < J. SHITH >

and then subsequently an attempt is made to redefine it by
writing: .

MCDEF EMPLOYEE AS < J. BLCGGS >

In this second definition the structure representation is J. SMITH
since EHMPLOYEE is replaced by its value. Hence a macro J would
e defined with secondary delimiters "." and SMITH. The end
result would probably be a puzzling error message, perhaps

that a delimiter of the macro J was missing.

To avoid problems such as this it is imperative to enclose
‘a name in literal brackets if it is being redefined. The same
applies if the name of one macro occurs as a delimiter of another.
In fact it is not a bad rule to enclose all structure representations

5/6

in literal brackets except where constructions.such_as PARENS
are being used. The correct way to redefine ENPLOYEE would
be: : ~ '

MCDEF < EMPLOYEE > AS < J. BLOGGS >

5.1.3 * Introduction to more complicated cases

The Sections which follow describe facilities for setting
up more and more elaborate delimiter structures. The reader 1is
recommended to read on until he knows enough for his own applications
and then to skip the rest. Readers who are only interested
in fixed delimiters may give up now.

In order to specify the delimiter structure of a construction
it is necessary to specify the name(s) of the construction and
the successor(s) of each delimiter that is not a closing delimiter.
In the simple cases described above the structure representation
consisted of the name of the construction and then each succeeding
delimiter followed by its successor until the closing delimiter.
In more complicated cases it is necessary to have two other
mechanisms for specifying successors, namely option lists and
nodes. Furthermore it is convenient to imagine that a special
symbol a occurs at ‘the start of each structure representation
and another symbol w at the end. With this convention any
successor of o is a name of the construction and any delimiter
with w as successor is a closing delimiter. The paragraphs
which follow contain informal introductions to the concepts of
option lists and nodes. lMore exact details are given in the
next Section.

Option lists are used to specify that a delimiter has
several optiocnal alternatives as successor. The essential
form of an option list is:

OPT branch 1 OR branch 2 OR ... OR branch N ALL
The ordering of the branches is immaterial. An- example
of the use of an option list is in the following structure
representation for the ESUB macro:

ESUB OPT TAB OR WL ALL

If, in addition, it was decided to allow SUBTRACT as an alternative

5/7

name to ESUB, then its-structure representation.would be:
OPT 1SUB OR SUBTRACT ALL OPT TAB OR NL ALL

In the ordinary way the successor of the delimiter at the

end of a branch is taken as the delimiter fcllowing the

ALL concluding the option list. In other words the branches
may be thought of as coalescing at the delimiter following
ALL. (Thus in the example above both .ESUB and SUBTRACT

have either tab or newline as alternative successors and both
tab and newline have the imaginary symool ¢ as successor

‘and are therefore closing delimiters.) However, as will be
seen, it is possible to override this coalescing effect by the
use of nodes.

fiodes are used for defining the successor of a delimiterx
to be a delimiter or option list elsewhere in the structure
representation. The use of nodes in structure representations
is analogaus to the use of labels in programming languages.
As the reader will know, the statements in a programming language
are written in sequence and tne "successoxr" of each statement
is normally taken as the statement which fallows. However, .
the user can specify a different successor oy the use of labels.
A .label is "placed" on one program statement and is then "gone
to" after any program statement which requires the labelled
statement as successor. In exactly the same way, nodes are
used to .specify the successors of delimiters.

A node is represented by a node flag followed by a positive
integer. The normal node flag is the leuter '*§' but this
can be changed if desired using tne #CALTER macro of Section
5.2.7. It will be assumed in this manual that the node flag
is '"W'. A node is placed by writing its name before any delimiter
name or option list. A node can be "gone to" only from the end
of a branch of an option list or at the end of a structure
representation. A "go to" is indicated simply by placing the
name of the appropriate node at the desired point. (Although
the name of a node is used both to place it and to go to it,
there is no ambiguity, owing to the different context in which
each occurs.) .As a simple example of the use of nodes, consider
the structure representation of a SUM macro whici allows any
number of arguments separated by plus or minus signs and terminated

5/8

by a semicolon. A typical call of SuUid would be:
SU4 A+ B ~-C+D;

The structure representation of SUM is:
SuM Nl OPT + N1l OR - N1 OR ; ALL

Tais is interpreted thus. SUM is followed by either a plus
sign, a minus sign or a semicolon. #Hode Nl is placed before the
option list. The successor of both plus and minus is defined
by going to 1, and Nl is associated with the alternatives plus,
minus and semicolon. The successor of semicolon, on the other
hand, is taken as the deliwmiter which follows ALL, which is w.
Hence the semicolon is a closing delimiter.

There are no particular restrictions on the use of ncdes.
Any number of nodes may be placed within a structure representation
provided, of course, that they have different numbers. BAny positive
integers may be chosen to designate nodes; no particular sequence
is required. Node numbers are local to the structure representation
in which they occur and hence there is no relation between the
nodes of one structure representation and those of another.
Thus the same node numbers may be used in each case. There are
no restrictions on -the scope of a "go to"; thus it may dive
into an option list or alternatively come out of one.

The node J4¢ (N zero) has a special usage, namely to denote
an exclusive delimiter. Hode ¢ may be gone to but it may not
be placed. If the successor of a delimiter is specified by
W@ then this delimiter is taken as an exclusive delimiter,

Apart from Ng, it is illegal to go to a node without placing
it. '

5.1.4 * Full syntax of structure representations

Before describing the general formm of a structure representatic
it is necessary to describe a number of syntactic sub-components.
These are:

(a) A nodeplace represents tne placing of a node and is
specified by the node flag follocwed by an unsigned

5/9

positive integer.

(p) A nodego represeits tne action of going to a node
and is also specified by the node flag followed
by an unsigned integer. (Ia this case and case
(a) above any reduandant leading zeros are ignored.)

(c) A delspec represents the specification of a delimiter
or an option list and is of form:

. (delimitexr name)
ot ? : - - — .)
[aodepiace 1 (OPT bramcn | Ox [nodeplace ?] brancu *?] ALL)

wiere a brancn is of form:

delimiter name | delspec * ?] [modego ?]

(The reader may like to look ahead to tihe examples in -
the next Section at this point.) Wwote that eacn braici
must begin with a delimiter name, called the Pranch name.
The branch names are tine possible alternative successors of
the delimiter preceding the option list, and must all oe
different. Tuus no seqguence of atows wust match more tnan one
branch name, and the following option list is tilerefore ‘
incorrect:

orT X WITH SPACE WITH Y .;. OR X WITHS ¥ ... ALL
since "X Y" could pe tie name of either brancih.

As was seen from the preceding example oi the SUM macro,
nodeplaces immediately preceding an option list associate
the node witih all the options of the list. The syntax forbids
a nodeplace immediately after OPT and a nodeplace immediately
following OR has a special meaning in that it associates tne
node not only with the delimiter name that follows it but
also with the names of all suisequent brancnes of tile option
list. As an example, assume that the SUM macro was extended
to allow the user tue option of assigning tue answer by
writing, for example:

SUi X =Y + Z; to calculate ¥ + % and assiygn the answer X,

oxr SUM Y + Z; o calculate Y + & ané leave the answer in
an accumulator.

Here 3UM has an optional first argument delimited by an
equals sign. Its structure representation could be written:

5/10

SUM OPT = N1 OR W1 + N1 Or = N1 OR ; ALL

In this case N1, whica is placed afterx tire tfirst OR, is
associated with the alternatives plus,ndnus. and semicolon.

Now that the sub-components have been described it
is possible to give the general form of a structure representation.
This is:

[delspec *] L nodego ?]

One last point should be made about the writing of
structure representations. This concerns minimnizing the amount
of storage that is needed to store a delimiter structure.

The storage used is a function of the number of delimiter

names in the structure. Thus it is advisable to try to link

a structure together in such a vay that it contains the minimum
number of delimiters. As an example of redundancy, consider
the following structure representation:

BUMP OPT TIMES ; OR ; ALL
This represents a construction of form:

BUMP | argument TIMES ?] argument ;
Note that the semicolon is repeated within the structure
representation of BUMP. However, this repetition can be
avoided by writing the structure representation iu the following
improved way:

EUMP OPT TIMES N1 OR wl ; ALL

5.1.5 * Examples of complex structure representations

This section contains tine general forms of some possible
constructions together with the structure representation of
each. '

Example 1

General form Either BUY arg A b arg B . arg C;

oxr BUY arg & POUNDS arg B & arg C D arg D;

5/11

Structure representation BUY OPT §§ . OR POUSDS S D ALL;:

In the second forxm, if it is desired to allow the 5 and D
fields optionally to be omitted, tnen the structure representation
could be written:

BEOY OPT ﬁ . ¢ OR POUNDS OPT S Nl Ok N1 D ; OR ; ALL ALL
Here Nl is associated with the possivilities D and semicolon.
In this form tiie semicolon is nentioned three tiwes. ‘ne
structure representation is therefore inproved oy writing
it in the following form, where semicolon oaly occurs once:

BUY OPT ﬂ . N2 OR POUNDS OPY S N1 OR N1l D N2 OR W2 ; ALL ALL

(The diagram iu the next Section may be an aid to understending
this.)

Bxamnle 2

General form [/ argument * 2] EWND

Structure representation N1 CPT / N1 OR END ALL

This macro has two possible names: "/" and "END".

pxample 3
(LOAD)

General form (TOAD Q) arg A, arg B WL
(STOR:) :

where the newline is an exclusive delimiter.

3tructure representation OPT LOAD OR LOAD WITHS O OR STORE ALL, WL W@

5.1.6 Possible errors in structure rcpresentations

Great care must be taken in writing structure representations
as errors can have very unfortunate results. In complex cases
it may be useful to use a diagram. For example the following

5/1z

represents the BUY macru cof the“éﬁeuiqus Section in -+ts--final
improved form., T

PPy

)
)

LY

%,

N

¥

&3 £ B
7 U
y »

§

)

o1a DLW N [\._:-“i |) N "-'T'D
-, . 0
6_\}"_ 4N - 4"»& (\
TN 3
TN 7 ﬁ) E @
ey e
.- .

Special points to be watched in writing structure
representations are the use of keywords and the possible
differences between the structure reprasentation as written
and its evaluated form. Rememoer that keywords cannot be
used as delimiter names.

If 1iL/X does reject a structure representation as illegal
(giving the message of Section 6.3.6), then the following
are some of the possible causes:

(a)

()
(c)
()

(f)
()

Illecal syntax, for example : unmatched OPT, node

after OPT, two nodes in succession, branch without

a name, placing of node zero, names such as N1A.
Keyword used as delimiter,

Undefined ox multiply-defined node.

Two branches with the same name.

Misuse of WITH or WITHS e.g. GO WITH TO, X WITHS W1.
Structure witn no closing delimiter.

Unconnected structure. For example the delimiter D

is not connected to the main structure in the following

cases

NOGOOD N1 OPT A N1 OR B N1 ALL D

5.2 The NEC

5/13

macros

The operation macros wWhich change +he. name environment are
listed in this Section,

5.2.1 MCWABRX

Purpose

GCeneral forum

Examples

Restrictions

System action

Definiticn of a local warning marker.
MCWARY arg a NL

(a) MCUWARN §

(b) MCWARN CALL WITHS THIS WITHS MACRO

ARG A must be a structure representation
consisting simply of a single delimiter name.

ARG A is added to the current enviroinment
as a local warning marker and the current environ-
ment is placed in warning mode.

5/14

5.2.2 MCINS

Purpose Definition of a local insert.

General form MCINS [arg A, ?] arg B HL

Examples (a) MCINS * .
(b) MCINS U, INSERT HERE

Restrictions ARG A, if it exists, must consist of the
letter 'P' or the letter 'U'. Redundant
spaces are allowed. ARG B must be a structure
representation of form:

delimiter name delimitexr name

System action A new local insert definition is added to the
current environment. The delimiter structure

of the new insert is represented by ARG B and

the option is defined as "protected" unless

ARG A exists and consists of the letter 'U'.

In this latter case it is defined as "unprotected".

Notes (a) Unprotected inserts are only needed for
sophisticated applications of #L/I and users
with simple applications can safely omit

arg A.

5.2,3 HCSKIP

Purpose Definition of a local skip.

General form HCSKIP | arg A, ? | arg B NL

Examples (a) MCSKIP L7, ()
defines " (" and ")¥ as literal hrackets.

(L) HCHSRIP o WITH. WITH B WITH.
deletes comments that comuence wita N.B.
and end with a semicolon.

(c) MC3:IP DT, '
(@) MCSKIP NOWL oL
(c) HCSKIP T, WOPUWCT W1l OPT, ¥1 OR. N1 OR END ALL

causes all commas and periods between NOPUNCT and
END to be deleted.

(f) MCSKIP STATIC

deletes all occurrences of STATIC. Note that
the delimiter structure of a skip can specify
any numeer of delimiters, althougi usually
there will be one, as in this example, or two.

Restrictions ARG A, if it exists, must iave form:

:
T el
(1)

Redundant spaces are allowed., ARG B must be
a structure representation.

System action A new local skip definition is added to the
current envircament., The delimiter structure
of the new skip is represented oy ARG B, and
the matcied coption, the text option and the
delimiter option are set if ARG A contains
the letter &, T. or D, respectively. If

arg A is omitted none of the options is set.

5/16

Notes (a) The letters in ARG A may be in any order.

(o) If arg A is omitted and arg B contains
a conma, tien thig comma should be enclosed
in literal pbrackets to prevent it being
taken as a delimiter of CSKIP.

5/17
5.,2.4 MCDEF
.Purpose : Definition of a local macro.
L . v - . (AS)
General form RNCDEF [arg'a VARS ? | arg B (ggag) 2X9 C NL
Examples (a) MCDEF ARRSIZE AS 6
(b) MCDEF ESUB NL
AS < CMA
ADD %Al.
Cith

>
is a definition of the ESUB macro used in
examples.

(c) MCDEF 6 VARS CALCULATE AS ...

(d) MCDEF (OPT + OR = OR * ALL) AS <%Dl. %Al. 3%A0.>
This macro converts fully parenthesized
algebraic notation to Polish Prefix notation.
Thus, for example, it would convert
((PI*26)~LuNGTH) to -* PI 26 LENGTH.

(e) MCDEF PARENS 28 WITH () WITH NL
defines the PARENS macro used in Section 5.1.2.

(£) MCDEF WOTE ; SSAS < [%WAl.] >
is the definition of the straight-scan
macro NOTE used as an example in Section 2.10.
"sgAS"™ stands for "straigint-scan AS".

(g) MCCEF CALL NL NG AS ...
defines a CALL macro with newline as
an exclusive delimiter,

Restrictions ARG A, if it exists, rust ONe a macro expression
and ARG B must be a structure representation.

Order of evaluation arg A, arq C, arqg B.

System action A new local macro definition is added to the
current environment. The delimiter structure
of this new macro is represented by ARG B, the
replacement text is specified by ARG C and the

Notes

5/18

capacity (i.e. the number of temporary variables)
is the greater of the result of ARG A and
three., The capacity is three if ARG A is
omitted. The new macro is set up as a normal-

scan macro if HCLEF is called with delimiter AS

and as a straight-scan macro if the delimiter
SS548 is used.

(a) The replacement text is normally enclosed

(b)

in literal brackets to delay evaluation
until macro call time aud to ensure that
any newlines within the replacement text

are not taken as the closing delimiter of
MCDAF,

If it is desired that the replacement text
be treated as a literal when the macio is
called as well as when it is defined, then
it is necessary to enclose the replacement
text in double literal brackets (see
example in Section 7.3.1).

_

5/19

5.2.5 MCNOWARW, MCHOINS, HCNOSKIP and pCNODEF

Purpose Deletion of local constituents of the current
environment.
GCeneral form (a) MCHOWARN

(b) MCNCINS
(c) MCWOSKIP
(d) HMCNODuF

System actions These racros respectively delete all local
warning markers, all local insert definitions,
all local skip definitions and all local macro
definitions from the current environment.

In addition, MCNOWARN causes the current
environment to be placed in free mode unless
there are any global warning markers.

Jotes ’(a)‘Note that these macros do not have newline
' ' as a closing delimiter,

(b) In current implementations no storage is
released if a constituent of the environment
is deleted by one of these macros.

(c) See the example in Section 7.3.4 for a nethod
of deleting individual constructions from
the environment.

(d) If MCNOWARY is to oe meaningful it must
be preceded by a warning marker.

(c) HMCNODEF does not cause the operation
macros to be deleted from the environment
since these latter are global.

5.2.6 MCWARNG,

5/20

MCINSG, MCSKIPG and MCDEIS

Purpose

General form

Examples

Restrictions

System actions

Notes

Global eqguivalents of MCWARN, MCINS, MCSKIP and
1"lC DE F .

similar to those of the corresponding local
macros.

(a) MCWARJIG MACRO

(b) MCINSG /.

(c) MCSKIPG DT, TEXTs:

(d) MCDEFG %Al. WITH(,)AS<...>

The restrictions on the forms of arguments
are the same as for the corresponding local
macros.

Ls for the corresponding local macros except
that the newly-defined constituents are global
rather than local. ’

(a) If a global NEC macro is calied in the source
text, the effect is the same as if the
corresponding local macro had been called
(except for certain differences if the name
is multiply-defined). Glcbal constructions
are not, however, deleted by the macros
MCNOWAR etc. described in Section 5.2.5.

For reasons oi efficiency the user is
recommended to use local macros where possible.

(b) If a call of MCWARNG occurs, all subsequent
text processing will be in warning mode,
since it is impossible to delete a global
warning markex.

5/21

5.2.,7 MCALTER

Purpose Alteration of the secondary delimiters of
‘operation macrcs or of the keywords used in
structure representations.

General form JCALTSR arg A W0 arg B NI
Examples {a) MCALTER
TO ;

MCALTER A5 TO H
After these two calls of uHCALTER, Example
(a) of Section 5.2.4 would we written :

MCDEF ARRSIZE : 6;

(b) MCALTER WITH TO +
MCDEF JOIN + (WITH) AS ...
MCALYER + TO WITH
Here WITH is changed to + and then back
to WITH again in order to deiine a macro
"JOIN (" with delimiter WITH.

(c) MCALTER W TO S
(d) MCALTER SPACE TO BLA:SK

Restrictions ARG A and ARG B must be single atoms. ARG A
must be either a secondary delimiter of one or
more operation macros or one of the keywords
used in structure representatiouns. ARG B
must not be longer than the system name of any
delimiter or keyword matched by ARG A. If
ARG A is the node flag (i.e. the letter 'N'
or whatever has replaced it) then ARG B must
be a letter or a digit.

Order of evaluation arg B, arg A.

System action ARG B is substituted in place of ARG A wherever
ARG & occurs as a secondary delimiter of an
operation macro or as a keyword.

5/22

Notes (a) MCALTER cannot be ueed to change the names of
operation macros.

(b) It is very dangerous to change a keyword or
delimiter to become the same as anotuer
keyword, for instance:

MCALTER UNLESS YO IF

The effect of an alteration such as the
above on subsequent processing is undefined,
since it depends upon the order in wihich
delimiters are scanned.

(c) In the unlikely event of a call of MCALTER
specifying several replacements some of
which are valid, and some of which are
invalid because of the length of ARG B, then
the number of valid replacements that are
performed before the call is aborted is
undefined.

(d) In the MCGO macro (and in any other macro
where the action taken depends upon the form
of the delimiters), the delimiters are
examined immediately the macro is called
and no call of MCALTER within an argument
can affect the action of the containing macro.

(e) Since the operation macros are global, the
effect of MCALTER is also global.

(£) Itlhas_been assumed in examples throughout
this manual (apart from this Section) that
no calls of MCALTER have occurred.

(g) Since MCALTER has a global effect, it is
not recommended to use it locally to a
piece of replacement text. If it is used
locally, MCALTER must be called again
before leaving the replacement text in
order to cancel the changes that have been
mnade.

(h)

5/23

. A lavont “averord can be MCALTERED to

~a th= samn as the character it renrasents,

~
PR » 9

MCAT/PER ML TO <
>

This will affectivelv Jelete the lavout
kavword, 2.0, aftar the abhova MCALTTR,
newline vonld stand for itsel< within
structure ronrasentations - it woulsd
not act as a sanarator.

5/24

5.3 System functions

The opera

this Section.

tion macros which return values are l1isted in
Note that these macros do not have a newline

as the closing delimiter.

5.3.1 MCLENG

Purpose

Ceneral form

Examples

System action

Function to find the length of a character
string. »

MCLENG (arg A)
The left parenthesis is part of the macro name,
It may optionally be preceded by spaces.

(a) MCLEWNG (%Al.)

(b) HCLENG (%A1, 3D3.PIG)

The value of this function is the number of
characters in ARG A. This number is represented

as a character string in the way described
in Section 2.6.7 (e).

5.3.2 MCSUB

Purpose

General form

o]

xamples

5/25

Function to access a substring.

MCSUB (arg A, arqg L, arg C)
The left parenthesis is part of the macro name.
It mav optionally be preceded Ly spaces.

(a) MCSUB (ABC/XYZ, 3, 6)
This function has value C/XY.

(b) MCSUB (ARGUMENT, =2, 0)
This function has value ENT, since
non-positive results of ARG 8 and ARG C
specify Offsets from the end of ARG A.

(c) MCSUB (%D2., 1, 1)

The value of this function is the first
character of the inserted delimiter.

(d) LCSUB (%A3. ¥%D3., 1, P3 - T€ + 7)

Order of evaluation axg A, arg B, arg C. However, arg C -

System action

is not evaluated if VB (see below) is
greater than L (see below) or is less than
one.

Let L be the number of characters in ARG A,
let RB be the result of ARG B, and let VB

be derived from these values by the following
rule: :

(RB if RB > O
VE = (
(L + K8 otherwise

Let VC pbe derived from the result of ARG C
by a similar rule. The value of a call of
HCSUB depends upon whether VB and VC describe
a valid substring of ARG A. This occurs if:

1l <VB < VU < L

Notes

5/26

If this relation dces not hold the value of

HMCSUB is null. If the relation holds the value

of MCSUB is the substring of ARG A from character
position VB up to and including character position
VC, the first character of aRG A being taken

as character position ane.

{(a) In the case where the relation nolds, the
valve of MCSUB consists of VC - VB + 1
characters.

(b) The value of MCSUB is not itself evaluated.
Thus the value of Example (b) would be
ENT even if ENT was a macro.

5/27

5.4 FMurther operaticn macros

The remaining operation macros, i.e. tihose not falling
into the previcus categories, are cdescribed below.

5.4.1 MCSET

Purnose

General form

Examples

Restrictions

System action

Macro~time assionment stateneiit,

MCSET arg A = arg B HL

(a) MCSET P10 = 3
(b) MCSET To = ~4
(c) MCSET TT3 = TP4 - 109 + 25/°P1

(d) HCSET T%Al.=%Al. + 17
where the value of the inserted argument is
a positive integer.

ARG A must be the name of a macro variable

in the current environment, (ARG A may
contain redundant spaces at the beginning

or the end.) ARG B must be a macro expression.

The result of ARG B is assigned to the macro
variable designated by ARG A.

5/28

5.4.2 MCNOTE

Purpose Generation of user's own error and debugging
messages.

General form MCWOTE arg & WL

Examples (a) MCWOTL %A3. IS ILLEGAL ARGUMENT
(b) MCNOTE OCCUREJCE NUMBER %Pl. OF <CONT>'

System action ARG A is printed on the debugging file (see
Chapter 6) as if it were a system message.
A newline 1s inserted in front of it
and it is followed by a printout of the
context of the call orf HCNOTE.

Notes (a) If example (b) occurred in line 3 of a
macro CONT, then the printout might be:

OCCURRENCE NUMBER 33 OF CONT

DETECTED IN |
LINE 3 of MACRO CONT WITH §O ARGUMENTS
CALLED FROM

LINE 267 OF SOURCE TEXT

(b) Notes (d) and (f) of Section 6.2 do not
apply to the printing of ARG A.

5.4.3 MCGO

PU.I‘EOSG

General forms

Examples

Restrictions

5/29

Macro-time GO TO statement or conditional.
GO TO. statement. :

(a) MCGO arg A HL

(b) MCGO arg A (IF) arg B (=) arg ¢ NL
(UHLESS) (BC) -
(EN)
(GE)
(GR)
The meanings of the respective mnemonic
second delimiters are:
Belongs to Class, Equals Sumerically,
Greater than or Equals and GReater than.

(a) HCGO L1

(b) MCGO LT1

(c) MCGO L6 1IF%Dl. = +

(d) MCGO LO UNLESS P3 ~ T5 GE - 6

(e) MCGO L T3 - P7 + 4 UNLESS %A6. BC W
This tests whether argument six is a number
(Belongs to the Class of Nmmbers).

ARG A must consist of the letter "L" (optionally
preceded by redundant spaces) followed by a

macro expression. The result of this macro
expression must never ke negative and, furthermore,
it must not be zero if MCGO is called from

the source text. If the second delimiter is

BC then ARG C, which is the name of a class,

must consist of one of the following letters:

I (for identifier)
L (for letter)
N (for number)

together with any desired number of spaces. If
the second delimiter is EWN, GE or GR then
ARG B and ARG C must both be macro expressions.

Order of evaluation arg B, arg C, arg A. In Form (b),

arg A is evaluated only if the condition
holds.

5/30

System action for form (b) ARG B and ARG C are compared .to’
yvield a true or false value. If the second
delimiter is EW, GE or GR, then numerical
comparison is performed; otherwise character
comparison is performed. The method of
comparison depends on the second delimiter
in the following way:

(a) =. A true value results only if ARG B
and ARG C are identical strings of characters.

(b) BC. If ARG C is the letter I, then
a true value results only if ARG B is
of form:

(letter) *
(digit)

If ARG C is the letter L, then a true value
results only if ARG B is of form: ’

[letter *]

If ARG C is the letter N, then a true value
results only if ARG B is of form:

[(+) *?] [digit*]
(=)

(c) EN, GE, GR. In these cases a true value
results only if the result of ARG B is,
respectively, numerically equal to, greater
than or equal to, or greater than the
result of ARG C.

If the comparison yields a false value and the
second delimiter is IF or if the comparison
yields a true value and the second delimiter
is UNLESS, then no further action takes place.
Otherwise the system action for Form (a)

is now performed.

System action for form (a) Let N be the result of the macro
expression in ARG A. If N is positive, then

Notes

5.4'3.1*

(95
~
w
)-4

the point cof scan is changed to the point
associated with macro label N. (See next
Section for a fuller description.) If N

is zero, then processing of the current piece
of text is abandoncd and evaluation proceeds
as if the end of the current piece of text
had been reached. Thus wnen N is zero a MCGO
serves a similar function to the RETURW statement
found in many high-lsvel languages. This
'RETURN' facility may be used within inserted
text or replacement text but not within the
source text.

(a) Wote that leading and trailing spaces
are removed before arg B and arg C are
evaluated. If it is required that these
spaces take part in the comparison, they
should be enclosed in literal brackets.

(b) If it is desired to achieve the effect of
a backward GO TO in the source text then
the required loop must be defined as the
replacement text of a macro call. See
Section 7.4.1 for an example.

(c) Sections 7.3.9 and 7.3.5 contain examples
of the use of HCGO,

(d) The user should be very careful to differentiate
between the two relational operators "="
and EN. Note that the relation "Pl EN P2"
is true if the first two permanent variables
have the same value whereas "Pl = P2" is,
of course, never true. Note that "%$Pl. = %P2."
is equivalent to "Pl EN P2",

Exact description of GO TO

The following is a more exact description of the action

of ML/I in performing a GO 10 when ¥ is positive.

If label ¥, which is called the designated label, is

5/32

present in the current environment then .the action of ML/I

is simply to change the point of scan to the point associated
with the designated label. Otherwise a forward search for the
designated label is performed, starting at the current point

of scan. If a macro call or skip is encountered during this
search, the search is suspended until the end of the macro call
or skip is found. Each time an insert is encountered outside

a call or skip, the argument is evaluated and the search ends
when an insert which "places" label N is found (or, in the error
case, at the end of the current piece of text). No value

text is generated during a search and no macro calls are performed
(except conceivably during the evaluation of the argument of

an insert). At the end of the search the action of MML/I is
concluded by setting the point of scan as the point immediately
after the designated label.

Aay labels encountered in the forward
search (including the designated one) are added to the current
environment provided that the rules of Section 2.6.7 (f) are
satisfied.

If an error is detected during a forward search then the
appropriate error message is printed in the normal way.

5.,4.4 MCPVAR

PurEose

General form

Example

Restrictions

System action

5/33

Allocation of extra permanent variables.
#MCPVAR arg A NL

(a) MCPVAR 100

ARG A must be a macro expression.

Let N/Se the result of ARG A. If N is

greater than the current number of permanent
variabies then the number of permanent variables
is increased to 8 ; otherwise no action is

taken. The values of the new permanent variables
are set to zero and the values of the previously
allocated ones remain unchanqged.)

6/1

Chapter 6 Error messages

ML/I detects all errors and prints a message at every
occurrence. An error message consists of a statement describing
the particular error that has been detected with a print-out
of the current context. This print-out enumerates all the
macro calls and insertions of arguments or delimiters that
are currently being processed, together with a line number to
indicate the state of the scan in each case. Lrror messages
are printed on an implementation-defined medium (see Section
4 of relevant Appendix) called the debugging file. This is
normally a printer or on-line typewriter. ‘

6.1 Example of an error message
/ .
An example of an error message is the following. Assume
the user has written:

MCSET Y10 = 56
in the source text. Then the following message would be given:

ERROR/(S)

ARGUMENT HAS ILLEGAL VALUE, VIZ "Y1O"
DETECTED IN

MACRO MCSET WITH ARGUMENTS

1) Y10

2) 56

CALLED FROM

LINE ... OF SOURCE TEXT

6.2 Notes on context print-outs

_ The printout of the coatext should be largely self-explanatory
but the following points should be noted.

(a) The line number is one greater than the number of
newlines so far encountered in tne piece of text to which
it refers. Line numbers refer to scanned text, not to value
text.

6/2

(b) If a macro .call or insert straddles more than one
line of text, then the line numbers of both the beginning and
the end of the call or insert are printed (e.g. CALLED
FROM LINES 6 TO 21 OF SOURCE TEXT).

(c) Waen the arguments of a call are enumerated, the
text of each argument rather than its value is printed.

(d) If a piece of text in an erxror message consists
of a single layout character, then the corresponding layout
keyword, enclosed in parentneses is used in its place, for
example:

DELIMITER (NL) OF MACRO X NOT FOUND
In addition a null piece of text is represented by (NULL).

(e) Any multi-atom delimiter occurring in an error
message is printed in full. = A space is printed between two
adjacent atoms if spaces are permitted between the atoms
(i.e. if WITiS has been used rather than WITH in their definition).

Note (d) above applies to each atom. As an example,>a
nessage involving the multi-atom macro name "MCSUB (" would
read:

MACRO HMCSUB (CALLED FROM ...

(£) There is an implementation-defined number 2N (see
Section 4 of the relevant Appendix) which is the maximum
length of a piece of text tnat can be inserted in an error
message. If a piece of text is too long, the first WN-4 characters
and the last N=-4 characters are printed, separated by tiaree
dashes and some spaces.

(g) If the text of an error message is about to overilow
a line, then a newline is artificially inserted.

6.3 Complete list of messages

This Section contains a complete list of all the error
messages produced by HL/I.

6/3

6.3.1 Illegal macro element

Hessage flag numper IS ILLEGAL MACRO ELEMENT
Description The number, which is the value of the subscript

or macro expression.- associated with the flag,

is either too large or too small. Alternatively,
macro elements of the type designated by the

flag do not exist in the current ocnvironment (e.q.
there are no arguments Or temporary variables

in the source text). -

System action The current operation macro or insert is
aborted.

6.3.2 Aritimetic overflow

lMessage ARITHMSTIC OVERFLOW
Description Overflow has occurred during the evaluation

of a macro expression or subscript. This
message occurs when an attempt is made to divide
by zero. It may also occur under other circum~
stances but these are implementation-defined
(see Section 5 of relevant Appendix).

System action The current operation macro or insert is aborted.

6.3.3 Illeqaliinput cnaracter

Message ILLEGAL INPUT CHARACTER
Description A character of the source text is not in the

character set of the implementation.

System action The illegal character is replaced by a fixed
implementation~defined character called the
error character (see Section 4 of relevant
Appendix). A typical error character is the
question mark.

6.3.4 Illegal macyo name

Message ILLEGAL MACRO NAME AFTER WARNING, VIZ ‘atom'

Description

System action

6.3.5 Unmatcned

6/4

A warning markew ie. £ollowed, possibly with
intervening spaces, by the giwven -atom whica

is not a mascro nawme (nor tihe start of a multi-
atom macro name). If this error occurs within
an argument the above message is printed both
when the argument is originally scanned and also
eacn time it is inserted.

The warning marker is treated as if it had

not been recognised as an environmental name,

and the atom which follows is treated as if

no warning marker had occurred. Thus, for example,
a skip name following a warning marker will

be treated as such.

construction

Mess age

Description

Possible causes

4
DELIMITER name [OR name*?] OF (1ACRO) rame
(SKIP) ~
(INSERT)
IN LINE numper OF CURREWT TEXT WOT FOUWD

The given construction whicn starts in the given
line of the current piece of text is not complete.
NJote that the line number is relative to the
current piece of text, When the error was
detected the scan was searching for the given
delimiter {(or for one of the given alternative
delimiters). The error is detected only when

the scan reachies the end of the. source text

or the end of a piece of inserted text or
replacement text,

A mismatch of the delimiters of a construction
nested within the given one can cause this

error since delimiter matcning is liable

to get "out of phase" as a result. alternatively,
an incorrect specification of a delimiter
structure can cause delimiters to be matched

in a way not intended by the user aund, again,

the error may e in a nested coustruction rather
than in the given one.

System action

5/5

In the call and insert cases, the effect

is as if the textLfzoM the macro or insert
name to the current point of scan was deleted.
In the skip case, text skipped over is treated
in the normal way and the skip is artificially
terminated.

6.3.6 Illegal syntax of arqument value

viessage

Description

System action

6.3.7 Redefined

ARGUMENT numoer HAS ILLEGAL VALUE, VIZ 'value'

The given value of an argument to an operation
macro or insert has not the required syntax..
For operation macro arguments see appropriate
wRpestrictions" subsection of Sections 5.2,

5.3 or 5.4, or if the argument is (supposed
to be) a structure representation then see
Section 5.1.6. For arguments to inserts see
Section 2.6.7.

The current operation macro or insert is
aborted.

label

Messade

Description

System action

6.3.8 Undefined

LABEL number. IS MULTIPLY-DEFINED

An attempt has been made to re-define a label
that has already been defined within the
current text.

The new definition is ignored.

label

Message

Description

LABEL nuuber REFERENCED IN LINE numbexr OF
CURRENT TwXT NOT FOUND

A call of MCGO references an undefined label.
This error is detected when the scan reaches
the end of a piece of text (since it performs
a search for the missing lapbel). If any
constructions are unmatched, the message(s)

of Section 6.3.5 are printed with this message.

6/6

Possible causes An.attempted backward. MCGO_in_ the source text
or an attempted ¥CGO from one piece of text
to another can cause this error. Alternatively,
it can be caused by an unmatched construction
within the scope of a forwardé iCGO,

System action The effect is as if the designated label had
been found at the very end of the current
piece of text.

6.3.9 Storage exhausted

Message PROCESS ABORTED FOR LAgK OF STORAGL [POSSIBLY
DUE TO other messages?|

Description iL/I has used up all its availanle storage.
If the current text is the source text then
the following additional information is
given: if there are any constructions currently
unmatched, or if a search is being made for
a label as a result of a forward MCGO, then
the messages of Sections 6.3.5 and 6.3.8
are printed with this message.

Possible causes Storage is taken up by macro variables, by
the name environment, by a macro call or
insert in the source text, and by nested
calls and/or inserts. Hence an unmatched
macro call in the source text or a call with
a very long argument can cause this error.
Alternatively, it can be caused by «n endless
or very deep recursive nest, by the name
environment being too big, or by a combination
of all these factors.

System action The current process is aborted.

6.3.10 System exror

Message SYSTLi ERROR
Description There has been a machine error, an operating

error or an error in the implementation of ML/I.

6/7

System action The current pracess is aborted.

6.2.11 Subsidiary message

Message (MACRO) name ABORTED DUE TC ABOVE ERROR
(INSERT)
Description This messayge occurs as a subsidiary message

every time an error causes the operation macro
or insert currently being performed to be
aborted. Any construction that has been aborted
is given a null value.

6.3.12 Statistics

Typical message AT END OF PROCESS: number LIMNES, number CALLS

Description The occurrence of this message 1is implementation-
defined (see Section 4 of relevant Appendix) .
It is usually printed at the end of a process
and sometimes at intermediate stages as
well, The number of lines of source
text that have so far been scanned, together
with the total number oi macro calls performed
(the value used as an initial setting of T2)
is printed.)

6.3.13 Implementation-defined messages

Description kach implementation may have its own particular
messages. See Section 4 of relevant Appendix
for details.

7/1

- Chapter 7 Hints on using ML/T

7.1 How to set up the environmant

wWwnere possible it is best to write all the NEC macro
calls to set up the environment at the start of the source
text., The name environment will normally contain an insert
definition and it is a good idea to define this first. Choose’
some atom(s) as the insert name that will not occur naturally in
the source text. Next define skips to cause comments and literals
in the source text to pe skipped over. Also define a pair
of literal brackets, again choosing atoms that do not occur
naturally in the source text. Thus do not use "<" and ">"
if these symbols are used to represent "less than" and “greater
than". Finally, define the required macros, not forgetting
to enclose arguments in literal brackets where necessary.
It may be useful to have a systematic convention for macro
names, for example starting every macro name with the same
letter. However, due to the randomizing technique used in
the internal working of many implementations of ML/I, it is
not advisable to choose wacro names all of the same length
and all ending with the same character, as this would slow
down execution.

7.2 Possible sources of erroxr

The following Sections illustrate some areas where the
user of uL/1 should take special care.

7.2.1 Jumping over expanded_ code

If macros are used in an assembly language, great care
must be taken with instructions of the form "jump to location
counter + W', since there may be macros within the scope of
the jump which expand into several machine instructions.

The same applies to machine instructions of the form "skip
one instruction". For tiis reason it is helpful to choose
macro names that cannot be confused with the names of machine

instructions.

7.2.2 Generation of unique labels

If a macro generates code which involves an execution-
time label, then a different label must be generated at each

7/2

call of the macro. The technigue-described .in Section 2.6.8(b)
can be used for this purpose. The same zapplies, in some cases,
to execution-time temporarxv variables.

7.2.3 Lowexr case letters

Note that in implementations where the character set
includes both upper and lower case letters, only upper case
letters may ke used for vocabulary words of ML/X. 'This
applies to the names and secondary delimiters of operation
macros, to keywords and to insert flags. Further note that,
for example, "PIG", "Pig" and "pig" are three different atoms.

7.2.4 Use of newlines in definitions

Remember that layout characters within replacement
text are treated like any other characters. They should therefore
be used with great care as they affect the format of the output
text. Thus:

MCDEF LOAD AS <LD>
LOAD X
would generate:
b X
whereas:
HMCDEF STORE
hS <ST
>
STORE Y
would generate:

ST
Y

7/3

Morever:
MCDEF JUMP AS

JUMP L36
would generate:

B
LB6

since JUMP would be defined as a null macro.

7.2.5 Use of redundant spaces

As a general rule extra spaces are ignored within text
that forms an instruction to i{L/I but are treated like any
other character within text that ML/I manipulates.

Spaces may be chosen as construction names, but in any
context where spaces are ignored they are ignored even if
space is a construction name. In particular, spaces are
ignored after warning markers so, when in warning mode, it
is not possible to have a macro name commencing with a space.

Below is a list of some of the places where spaces are
ignored:

(a) At the beginning or end of an argument to an
operation macro (before evaluation).

(b) Ditto for an argument to a substitution macro,
provided the insert flag B is not used.

(c) After a warning marker.

(d) Within a macro expression (except within variable
names oOr constants).:

(e) Within the argument to an insert (except within
variable names or constants).

(f) Within the values of those operation macro arguments
that specify options.

7/4

Within structure representations one or more spaces act as
a separator.

7.3 Simple techniques

This Section illustrates a few techniques for solving
some simple problems. In general, only one solution is given
but there are often several equally good solutions. In some
cases a problem has been described in terms of the use of
ML/I as a preprocessor to a particular language, but in each
case the problem has counterparts in other applications.

7.3.1 Interchanging two names

Problem it is desired to interchange the names PIG and
DOG in a piece of text.

Solution The complete name environment is set up as follows:

MCSKIP MT, < >
#MCDEF PIG AS <<D0OG>>
MCDEF DOG AL <<PIG>>

and the desired result is achieved by evaluating
the given text under this environment.

Notes (a) In this example there is no necessity to
have an insert definition in the environment.

(b) Notice that two pairs of literal brackets
are used to surround the pieces of replacement
text. One pair is stripped off at definition
time and the second at replacement time.
If the brackets were omitted, ML/I would
endlessly replace one name by the other.

7.3.2 Removing optional debugging statements

Problem It is desired to include a number of extra statements
in a FORTRAN program in order to aid in debugging
its execution. These are to be removed when the
program is debugged. Each statement ends with a
newline. :

7/5

Solution Some unigue atom, say DEBUG, is written-at the
beginning of eacn debugging statement. Before
the FORTRAN program is compiled it is passed
through ML/I. If it is desired to include the
debugging statements then the following skip
definition is placed in the name environment:

MCSKIP DEBUG
This causes each occurrence of DEBUG to be deleted.
When it is desired to deleta the debugging statements
then the following skip definition is used:

MCSKIP DEBUG UL

7.3.3 Inserting extra debugging statements

Problem It is desired in a PDP~7 Assenbly Language program
for a particular variable COW, to replace every
occurrence of DAC COW (deposit accumulator at
COW) by a call to a subroutine (which perhaps prints
the value assigned to COW). This call has form
JMS TYPCOW.

Solution HCDEF DAC WITHS COW AS <JMS TYPCOW>

7.3.4 beleting a macro

Problem It is desired to delete the macro GONE from the
current environment.

Solution The following skip accomplishes this:
MCSKIP D, <GONE>

Notes (a) The literal brackets preveni GONE being callea
during the evaluation of the second argument
of the above KCSKIP.

(b) Strictly speaking the macro GOWE is overridden
rather than deleted (see Section 4.7(a)).

/6

7.3.5 Differentiation between special=purpose registers and

storage locations

e e ettt . .

Problem

Solution

It is desired to define an INTERCHANGE macro for
PDP-7 Assembly Language so that,as well as being

used to interchange the values of two storage location
it can be used to interchange the accumulator with

a storage location., In the latter case "ACC"

is written as the first argument of the call.

Assuming the existence of a MOVE FROM macro, which
moves the value of one storage location into
another, the definition of INTERCHANGE is written:

[CDEF INTERCHANGE WITH (,) WITH NL
AS <MCGO L1 IF %Al. = ACC

MOVE
MOVE
MCGO
$L1l.
MOVE

>

FROM %$A2. 10 TEMP; #OVE FROM %Al. TO %A2.;
FROM TEMP TO %Al.;
Ly

DAC TEMPAC

FROM $%$A2., TO TEMP; MOVE FROM TEWPAC TO 3A2.;
LAC TEMP

7.3.6 Testing for macro calls

Proklemnm

Solution

It is desired to find out whether a:. argument of
a macro call itself involves any macro calls,
inserts or skips.

Compare the written form of the argument with

its evaluated form. (It is assumed that any construc-
tion occurring within the argument would cause

these two forms to be different.) The following

is an example of how the test might be written:

MCGO L1 IF %Al. = %WAL.
Alternatively, if it was only required to test
if the argument involved any macro calls, the
test might be written:

MCGC L1 IF .CNODEF%Al., = %Al.

nrovided that % had bheen defined as an unnrotectaed
insert.

7/1

7.3.7 Searching

Problem It is desired to search the source text to find
all occurrences of given atoms.

Solution Define macroé sucih as:
MCDF X
AS <MCHOTE HERE IS <X>

>

It is best to send the output text itself to a
null channel so that the only printed output
is the MCNOTE message.

7.3.8 Bracketing within macro expressions

Problem Parentheses cannot be used within macro expressions.

Solution Use nested inserts. For example to insert the
value of (P1 + 6) / (P3 - 2) write:

$%P1l+6./%P3-2..

7.3.9 Deletion from source text only

Problemn It is desired to delete a given atom only if it
occurs in the source text.

Solution Use temporary variable three, e.g.s

MCDEF X AS <MCGO L@ IF T3 BN 1
SWD@. >

7.4 * Sophisticated techniques

This Section illustrates some techniques which may be
of value to the more sophisticated user.

7.4.1 Macro-time loop

Problem A macro-time iteration statement is required in
order to generate repetitive text.

Solution

Examgles

Notes

7/8

The macro HCFOR defined below sexrves this purpose.
It allows the.step size to be opticnally omitted;

in this case a step size of one is assumed.

MCFOR should be recgarded as a "black box" by

the reader who finds the definition belcocw hard

to understand. The part labelled "L2" is to deal

with a negative step size.

MCDEF MCFCR = OPT STEP N1 OR N1 TO ALL NL REPEAT
AS<MCSET 3Al. = %A2.

MCSET T3 = 1

MCGO L1 IF T1 EN 4

MCSET T3 = %A3.

MCGO L1 IF T3 GR ¢

3L2. HCGO Lg IF $AT1l-l. GR %Al.

$ATL.MCSET %Al, = SAl. + «3

MCGO L2

$Ll. MCGO L@ IF %Al. GR $ATl-1l.
{iCGO Ll

>

{(a) HCFOR P1 = 1 TO0 20
JMP LAB%P1.
REPEAT
would generate the twenty instructions
JMP LABl, ... , J#P LAB20. '

(b) HCFOR P6 = 20 STEP - 1 TO 1
JMP LAB%PG.
RuPEAT
would generate the above twenty instructions
in reverse order.

(c) HCSET P2 = 1
MCFOR P1 = 1 TO 10
3P2 ,MCSET P2 = P2+P2
REPEAT

would generate the first ten powers of two.

(a) The controlled variable must e a permanent

(o)

(c)

(a)
(2)

7/9

variable. (If it were a temporary variable,
MCFOR would try to use 1its own temporary
variables rather than those of the calling
environment tiius causing an error.)

The initial value, step size, and final value
must be macro expressions not inveolving tem-
porary variables.

MCFOR is a substitution macro, not an operation
macro.

Calls of MCFOR may be nested.

MCFOR can be used to perform loops within
the source text, thus surmounting the
restriction that backward MCGOs within
the source text are not allowed.

7.4.2 Examining optional delimiters

Problem

3o0lution

An IF macro has form:

(GE)
IF arg A (GR) axg B THEN ...
(LT)
(=)
(etc.)

Within the replacement text of IF, it is desired
to examine the form of the first delimiter and
go to L1 if the delimiter is GE, to L2 if it is
GR,etc. This problem can obviously be solved

by writing a large number of conditional MCGO
statements but this would make the IF macro very
slow and cumbersome.

The various possible delimiters can e defined
as macros thus:

MCDEF GE AS 1
MCLEF GR AS 2

etc.

7/10

and then the requisite switch statement can be
written:

MCGO L%D1.

Notes (a) The definition of the delimiters of IF as
macros does not affect the scanning of a
call of the IF macro since the use of an atom
as a delimiter takes precedence over its use
as a macro name.

(b) It is necessary to place the definitions of
GE etc. after the definition of IF or else
to enclose the structure representation of
IF within literal brackets.

(¢) This technique will not, as it stands, work
for name delimiters. However, see Section
7.4.8‘

7.4.3 Dynamically constructed calls

Problem It is required to implement a WHILE macro of form:

(GE)
(GR)

WHILE arg A (LT) axrg B DO
(=)
(etc.)

arg C

END -

Within the replacement text of this macro it is
desired to call the IF macro with the first delimiter
of this call of IF the same as the delimiter that
occurred in the call of WHILE. However, as was

seen in Section 3.6, it is not possible to do this

by writing:

IE" . e O %Dl. L N BN THEN - o0

Solution

Notes

7/11

It is necessary to use a temporary macro definition
to build up the text for the required call of IF
and then to call the temporary macro. This could
be achieved thus:

MCDEF <TEMP>AS<IF> ... %WOUl., ... THEN ...
TEMP

(a) WDl was used rather than Dl since GE etc.
are macros and it is not desired to call
them at this stage.

(b) Note that the insert %WDl. is not enclosed
in literal brackets and is thus inserted when
TEMP is defined., Thus if this delimiter were
GR, then the replacement text of TEMP would
be:

IF L] GR . a0 Q:IEN LN BN)

and calling TEMP would then accomplish the
required call of IF,

(c) TEMP is enclosed in literal brackets when it
is defined in case there is already a TEMP macro
in existence. This might arise, for example,
if the WHILE macro was called recursively.

(d) TEMP should be a local macro rather than a
global one so that the storage it occupies
is released when an exit is made from the
WHILE macro.,

(e) This general technigue can be used in all cases
wiere it is required to build up a call
dynamically. The next Section contains a further
example of the technique.

7.4.4 Arithmetic expression macro

Problem

A macro whose name is " (" has been designed so
that, when supplied an arithmetic expression as
argument, it generates assembly code to calculate
the value of the expression and to place the
resultant value in an accumulator. This macro

Solution

Notes

7/12

Will Le zeforrad O es "the parenthesis macro".
A typical call of the parentlhesis macro might be:

(PIG +(Y¥/6)*% - 16)

This involves a nested call of the same macro.
The argquments of the outer call are PIG, (Y/6),
7 and 16, and the delimiters are +, * and -.

It is desired to use this macro to implement a
SET macro, which allows a macro expression as
argument, Calls of SET might be:

[}

SET DOG Y

SET VAR = (VAR + 6)/13 - PIG

i

The solution to this problem is not to give the
SET macro a complicated delimiter structure but
rather to regard it as a macro with two arguments.
The second argument is then passed down to the
parenthesis macro, which breaks it down into
operators and operands. The SET macro is defined:

(a)

(b)

MCDEF SET = NL

AS <MCDEF TEMP AS <(>%WA2.<)>

TEMP

[instruction to store tihe result in 3Al.]
>

Notice the use of TEMP to build up a call
of the parenthesis macro. In the second

of the anove examples of S&T, for instance,
TEMP would be defined as:

((VAR+6) /13 - PIG)

When TEMP was calléd, it would result in a
call of the parenthesis macro with arguments
(VAR+6), 13 and PIG.

It would have been wrong to call the parenthesis
macro from within 3ET by writing simply

($A2.), since this would have been interpreted
as a call with one argunent.

7/13

7.4.5 Formal parameter names

Problem

.Solution

It is desired to use the nawe TAXRATE for the first
formal parameter of the macro DLDUCT.

The first part of the definition of DEDUCT is
written: - :

MCDEF DEDUCT ... AS <MCDEF TAXRATE AS %Al.

. o

Thereafter within the replacement text of DEDUCT,
TAXRATE can be written in place of "%Al.".

7.4.6 Intercepting changes of state

Problem

Solution

It is desired in PDP-7 Assembly Language to generate
some decimal constants within the replacement

text of a macro SIZE. However, PDP-7 Assemoly
Language has two statements, OCTAL and DECIMAL,

to control the base to which constants are to

be written, and this might vary between calls of
SIZE. Furthermore, it is desired that a call

of SIZE shoulid not change the base behind the
user's back.

A permanent variable, say PlC, is used as a switen,
the value zero being used to indicate an octal
base. The folluwing is written at the start of
the source text:

MCSET Pl¢p = @ ' :
MCDEF OCTAL AS <MCSET Pl¢g = (¢
SWDY . > :

MCDEF DECIMAL AS <MCSET Plg = 1
$WDHZ . >

and the definition of SIZE is written:

HCDEF SIZE AS <MCSET Tl = Plg
DECIMAL

-
()

MNCGO L IF T1 BN 1
OCTAL

>

7/14

thus ensuring that the base is returned to its
original state.

Note This technique is also useful for the following
problem: the user has written a macro SUBS to generat
code for subscripted vectors and it is necessary
that SU3S generates different code for the two followince
calls:

(a) LAC SUBS (v, 1) Load accumulator from element.
(b) DAC SUBS (V, 1) Store accumulator in element.
The problem is solved by using the above technique
to cause LAC and DAC to set a switch wihich the

SUBS macro can then test to find out which instruc~-
tion preceded its call.

7.4,7 Remembering code for subsequent insertion

Problem It is desired to design two macros, REMEMBER and
INSERT, to enable the user to remember text for
subsequent insertion. These macros are used in
the following way. KEMEMBER is called with a piece
of text as argument. REMEMBER does not generate
any code but remembers its argument for subsequent
insertion. When the INSERT macro is called all
the pieces of text that have been remembered are
inserted.

Solution A seguence of global macros Il, 12, ... IN is
used, the value of N being given by a permanent
variable, say Pl¢. £ach macro represents a piece
of text that is to be remembered. ‘The definitions
of REMEMBER and INSERT would be written:

HCSET Pl¢ = ¢

MCDEF REMEMBER;

AS <MCSET Plg = P1l¢g + 1

MCDEFG I%Pl¢. AS %Al.

>

MCDEF INSERT AS <#CFOR P1 = 1 TO Pl¢g
RECALL I%Pl.

REPEAT>

Notes

7/15

where MCFOR is the macro of Section 7.4.1 and
RECALL is a macro defined thus:

#CDEF RECALL NL
AS <MCDEF TEMP AS%Al.
TEMP >

(a) The above solution tries to minimize the
amount of storage used. It would have been
possible to do without the RECALL macro,
but this would have involved redefining
TEMP N times within the MCFOR loop and so,
albeit temporarily, using up rather more
storage.

"(p) wote that the macros Il etc. must be global

whereas the macro TEMP should be local.

(¢) An apparently promising technique for this
problem which fails because of excessive
use of storage is the following. The entire
remembered text is maintained by redefining
the INSERT macro as below each time REMEMBER
is called:

HMCDEF REMEMBER; AS <MCDEFG<INSERT> AS INSERTSAl.

>

The trouble with this approach is that old
versions of INSERT can never be released,
thus using up a very consideraple amount
of storage.

7.4.8 Constructions with restricted scopes

Problem

Solution

It is desired to assign different meanings to

a macro X within different scopes. One meaning
is to apply within the replacement text of a set
of macros M1, ..., MN whereas another meaning is
to apply elsewhere.

One solution is to redefine X as a local macro
within each of Ml to N, but this is tiresome if
N is large and slower than the method below even

Notes

7/16

if N is ‘cne. A better solution is tc place the
two tollowing definitions at the start of the
source text: :

MCDEFG X ... AS <replacement to be used in Ml to MiN>
MCDEF <X ... > AS <replacement to be used elsewhere>

The second definition overrides the first. Within
the macros Ml to MN the first definition can be
re-incarnated by writing MCNODEF, which deletes
the second definition. Any macros besides X that
were used within Ml to N should also be defined
as global.

(a) This technnique can be used in a variety of
applications. It is the best solution in
almost all situations where a macro or set
of macros has restricted scope, but where
this scope does not consist simply of the
replacement text of a single macro. Even
in the latter case the technijue is useful
as it is faster than setting up the local
definitions every time a macro is called.

(b) This technique can be used tc extend the
technique described in Section 7.4.2 to make
it work for name delimiters. For example,
if a macro had alternative names A and B and,
within the replacement text of this macro,
it was desired to insert the number 206 if
the name was A and the number 15 if the name
was B then this could be achieved, assuming
"g" to be an unprotected insert, by writing:

MCDEFG A AS 206
MCDEFG B AS 15

MCDEF <OPT A OR B ALL ...>AS< ... MHCNODEF%D@.

>

7.4.9 Optimizing macro-generated code

Problem It is desired to optimize the cude gonerated by
ML/I, in particular to cut down possible inefficiencies
at the boundary between successive macros.

Solution There are basically two approacines to producing
optimal code:

(a) Code can be optimized as it is produced.
Typically this would involve using the permanent
variables to maintain some sort of indication
of the previous instruction(s) generated.

(b) A second pass can be made through the macro
generated code, to search for various inefficient
sequences of instructions.

Except in simple cases, the second method is usually
the better. Tn many machines consideraple optimization
can be performed by maintaining where possible

an indication of the contents of the accumulator(s)
or other special-purpose registers and thus cutting
out redundant loading instructions. This can

be done by defining macros to map into numbers

all the variables used in the code being generated.

A permanent variable, say P1l, could be used to
indicate whether the accumulator was known to contain
the current value of a particular execution-time
variable. If so,Pl could contain the number of

the variable, otherwise it could be zero. Pl

would nzed to be zeroized when a label was placed,

a subroutine was called, etc., This migiht be

achieved by defining a macro with many alternative
names, covering all the situations where the
accumulator was clobbered. The macro migat be:

MCDEF OPT , OR JMS OR ADD OR ... ALL AS<HCSET Pl = ¢
$WDP . >

7.4.10 Macro to create a macro

Problem This problem illustrates the use of a macro to
set up the definition of another macro. The

Solution

3]

F

xamples

Notes

7/l

nroblem i8 as follow=s. It is decired to design
a macro EQUATE which equates one vector to part
of another. Thus the call:

EQUATE VECLl TO VEC2 OFFSuT 3

would cause each subsequent reference to an element
of VECl, which has form, say:

VEC1l (subscript)

+to be translated intc a reference to the corresponding
element of VEC2, namely:

VEC2 (subscript +3)
MCDEF EQUATEZ TO OFFSET NL
AS <MCDEFG%Al. WITH() AS%A2, (<3ALl.>+%A3.)

>

(a) The call:

EQUATE VECl TO VEC2 OFFSET 3
would be equivalent to writing the definition:
MCDEFG VEClL WITH() AS <VEC2(%Al.+3)>

(a) The main source of error in this sort of
problem is to confuse the arguments of the
macro that creates the definition with the
ar~ments of the new macro being defined.

The rule is that the latter should be enclosed
doubly in literal brackets. Hence in the
replacement text of EQUATE, the arguments
within single literal brackets are the arguments
of BQUATE, which are inserted when the new
macro is defined, and the argument within

double literal brackets is the argument

of the new macro, which is inserted when

the new macro is called.

S/1

ML/I User's Manual 4th Edition

Supplement 1l: startlines and stor markers

This supplement describes two new features that have been
recently added to ML/I. The features are available in version AIC
of ML/I. For those interested in how these features are implemented
a separate document is available.

New feature l: startline

+ is often useful, when processing text where a line is a
logical entity ({(e.g. as in most assembly languages and some high-
level languages), to define newline as a macro name. This causes
subsidiary problems because

(a) the first and last line of the text need to
be treated specially.

(b) as well as being a macro name, newline méy
also be a closing delimdter.

To remedy this, ML/I contains a new feature whereby the
input routine can be made, on option, to insert an invisible layout
character called "startline" at the start of each line of text.)
The option is controlled by the variable S1l: if S1 is one, startline
characters are inserted; if Sl is not one, they are not. Initially
Sl is zero. ML, I treats startline like any other layout character.
Its layout keyword is SL.

Startlines are ignored in the output text from ML/I. How-
ever they are not ignored in value text and the user is recommended
to set 31 to one after his macros have been read in. (One reason
for this is illustrated by the following example:

MCDEF TEST OPT ; OR WL ALL
AS < MCGO LI IF $WDl.=

>

If S1 was one while this macro was being read in, then a startline
would appear before the ">" character. In this case the test after
the IF, which should test if delimiter one is a newline, would in
fact test if delimiter one was a newline followed by a startline.
The test would therefore always fail.) If, as is very often the
case, startline on its own is a construction name, the above
recommendation is virtually imperative.

s/2

gince startlines are invisible on a listina, 2any
occurence of a startline in an error message 1is renlaced by
(sL) .

Examnle

The followina macros would list all labzlled statements
in an assambly lancuage program. It is assumed the assembler is
such that statements ara one to a line and a line is labellad 1f
the first character is not a swvace.

MCSKIP SL WITH SPACE NL

MCDEF SL NL

s/3

New feature 2: s top markers

An annoying feature of previous versions ML/I was that
if a delimiter of a macro call in the source text was accidently
omitted or wrongly spaecified, then the remainder of the source
text might be scanned over in searching for the missing delimiter.

To remedy this, ML/I now contains a new construction
called a stop marker. Stop markers are defined by means of the
operation macro MCSTOP, which has a similar syntax to MCWARN,
Stop markers are only recognized when ML/I is searching for a
delimiter of a construction in the source text. Outside of this
context, stop markers are not part of the environment. If it
encounters a stop marker, ML/I gives a message to signal that the
current construction(s) are unmatched. The text from the construction
name up to (but not including) the stop marker is ignored, and scan-
ning is resumed at the stop marker itself. For example if the source
~ text read:

MCDEF IF THEN NL

AS< ... >

MOSTOP NL

IF X =Y THIN GO TO 2

ML/I would take the final newlin2 as a stop marker and - would give
the error message

DELIMITER THEN OF MACRO IF IN LINE ... -NOT FOUND

Stop markers obey the normal rules for name clashes (see
Section 4.6 of Usexr's Manual). Hence if, in the above example,
THIN were replaced bv THEN, then the final newline would be treated
as a delimiter of IF rather than a stop marker and there would be
no error message. An implication of this is that if the following
definition were added to the above text

MCSKIP DT,COMMENT N1 OPT NL N1 OR ; ALL
than COMMENT XXX

YYy

%222;

would not cause an error since all newlines would be treated as

S/4

delimiters, not stop markers. In-general, therefore, it is possible
(though tortuous in all but the simplest cases)_to.define construc-
tions that may be arbitrarily long even if stop markers have been
defined., '

NMote that stop markers override the normal scope rules in
that they are recognized within skips and within straight-scan
macros. They are treated as local constructions. (There is no
MCSTOPG.)

Stop markers will stop forward MCGOs in the source text,
as well as unmatched constructions,

Experience with stop markers has shown that in 9 out of
10 applications of ML/T it is a good idea to include

MCSTOP NL

in the environment. It is best to make this the last definition
since calls of MCDEF may legally straddle several lines.

P.J. Brown
July, 1971.

5/5 .

ML/I User's Manual 4th Edition
Supplement 2: controlled line numbers and optional’
‘ warninq markers .

This sumplement Eescrlbes two new features that have
been added to ML/I. The features are available in wversion 2ID of
I'L/I. For those interested in how these features are implemented
a separate document is available.

New feature 3: controllcd line numbers .

In many uses of WL/I some predefined macros are applied
to a piece of text. If errors occcur, the line numbers in the
error messages 40 not correspond to a listing of the text being
processed. For example if the macros occupy 93 lines then ML/I
takes the first line of the text to be processed as line 94.

This can be very confusinc tc a user of a packacge of macros that
is unknown to him.

To remedy this, the source text line number has been
made accessible to the user hy placing it in S2.

S2 is initially O and ML/I increases it by one at the
start of each line of the source text (including the first), and
assigns the new value of S2 to ML/1's internal line count that is
used in error messages.

Writers of packaces of macros should, at the end of
their macros, reset 82 to zero {(or whatever value makes the first
line of the text to be precessed line one - differences can occur
when newline is part of a conatructlov nare as ML/I is sometlmes
looking ahkead).

The wvalue of 82 is also useful for cther purposes, e.d.
for generating unicue labels or for use in comrents in generated
output.

New features 4: optional warning markers

If 83 is one, the error message that is normally given
if a warning marker is not followed by a macro name is suppressed.

This is useful if macro calls in the source text are
only to be recognised in certain positions, e.g. following a tab
or at the start of a line. 1In such examples the characters tak
or startline could be defined as warning markers, and, assuming
that not all cccurrences need to be followed by macro calls, S3

could he set to one.

Mote that i€ a warnino marker is not followed hv a macro
name it is treaated as if it were not aconstruction name at all and
is thus normallyv conied over to the value text. This anplies
irresnective of whether S3 is being used to suprnress the error
message.,

The followinog examnle illustrates how optional warning
markers work-

MCDEF PIG AS POG

MCINS %.

MCSET S3=1

MCWARN +
+PIG,PIG,MCSET+%S 3. +NOTMACH++

would generate the value text

POG,PIG,MCSET+1+NOTMACH++

s/7

Sunplement 3: An extra oction

This supplement descrilies a new feature that is availabkle
in version MIF of "L/I. '

lew Feature 5: option on HMCNQTE

If €4 has the value one, MCNMOT." suppresses all the
contextual information it normally gives, .11 that is output
is the valuz of the argument of MCIOTR, nraceded and followad
I'v a nevline. For example

ICa:nT 14 = 1

MCMOTE ESS 1

HMCHEOTE ERROT IV LIVE %82,
would produca the message

MESS 1

Breon IV LIVE

I£ 34 has value zero the normal contextual information is
printed,

INDEX/1

IWDEX

A (as insert flag) 2/14
ALL 5/6

Ambiguous name 4/6

ARG 5/1

arg 5/1

Argument 2/3

Atom 2/2

B(as insert flag) 2/14
Branches 5/6

Call (of macro) 2/3

Call by name 3/1

Capacity 2/7. 2/10, 5/17
Character set 2/1
Clashing names 4/6
Closing delimiter 2/3
Construction 2/12

Current environment 3/1
Current point of scan 3/1

D (as insert flag) 2/14

Debugging file 6/1

Definition time 4/3

Delimiter 2/3 et seq

Delimiter option (on skip)
2/18, 3/15

Delimiter structure 2/5, 5/2
et seq

Dynamically generated
construction 3/6

Environment 2/1, 2/22, 3/1

Error causes 7/2

Error messages 6/1 et seq

Errors in structure
representations 5/11

Evaluation 2/1, 3/1 et seq

Examples (conventions used)
2/23

Exclusive delimiters 3/4, 5/8

Expressions (macro
expressions) 2/11

L] » - . » . . L) . L] » .

L * * L] > * . . . L . L] . » * L * * L] * L] * L L) L[] L] » L] L] . L]

Flag.(forvinsert) 2/14
Free mode 2/21

Global construction 4/3
Glokal name environment 4/4

Initial environment 4/3, 4/4
Insert 2/9 at seq, 5/14
Insert name 2/13

Inserted text 2/14

Reywoxrd 5/3

Label 2/12, 5/31

Layout keyword 5/3, 5/23
Literal brackets 2/20, 4/2
Local construction 4/3
Local name environment 4/4

Macro 2/2 et _seq, 5/17

Macro call 2/3

Macro element 2/13

Macro expression 2/11

Macro label 2/12, 5/31

Macro name 2/3 _

Macro-time statement 2/8

Macro~time variable 2/8, 2/9

HMatched (opticn on skip) 2/18,
2/19, 5/15

MCALTER 5/21

MCDEF 5/17

MCDEFG 5/20

MCGO 5/29

MCINS 5/14

MCINSG 5/20

MCLENG 5/24

MCNODEF 5/18

MCNOINS 5/19

MCNOSKIP 5/19

MCNOTE 5/28

MCNOWARN 5/19

MCPVAR 5/33

MCSET 5/27

INDEX/2

MCSKIP 5/15
MCSKIPG 5/20
MCSUB 5/25
MCWARN 5/13
MCWARNG 5/20

Ng (node zero) 5/8
Name clash 4/6

Name delimiter 2/3
Name environment 2/22
NEC macro 4/3

Nesting 3/1

Newline 2/1, 7/2

NL 5/4

NL 1/3

Node 5/6 et _seq
Normal-scan macro 2/22
Notation 1/3, 5/1

Operation macro 4/1
OPT 5/6

. Optional delimiter 2/5
OR 5/6

Output text 2/2 -
Overflow 2/12

Permanent variable 2/10
Process 2/2

Protected insert 2/13, 4/5
Punctuation character 2/1

Recursion 3/1

Repeated delimiter 2/5
Replacement text 2/3
Scanned text 2/1, 3/1
Scanning 3/2

Secondary delimiter 2/3

Skip 2/17 et seq, 5/15

Skip name 2/18

Source text 2/2

Space character (use of) 7/3
SPACE 5/3

SPACE 1/3

SPACES 5/4

Straight skip 2/19
Straight-scan macro 2/22

Structure representation
5/2 et seq

Subroutine 2/8

Subscript 2/11

Substitution macro 4/1

Successor 2/5

Syntax (for describing
ML/I) 1/2

System function 4/1, 5/24

System variable 2/10

Tab 2/1

TAB 5/4

TAB 1/3

Temporary variable 2/10

Text 2/2

Text (option on skip) 2/18,
5/15

Unmatched construction 3/3
Unprotected insert 2/13, 4/5

Value text 2/1
Variable 2/8

WA (as insert flaqg) 2/14

Warning marker 2/21, 5/13
Warning mode 2/21

WB (as insert flag) 2/14

WD (as insert flag) 2/14

WITH 5/2

WITHS 5/2

